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Project Background

* Remote sensing is entering a new era where modern satellites
monitor the Earth surface in ever-shorter time intervals and
ever-increasing spatial resolution.

* Copernicus program by the European Space Agency (ESA)
* Landsat program in the U.S.



The Overall Research Aim & Specific Research Objectives

* The overall aim of my PhD research is to develop deep learning
algorithms that can exploit satellite imagery time series (SITS) with a
particular focus on vegetation and urban growth monitoring.

i. Exploiting the spatiotemporal structural information in raw SITS.

ii. Employing unsupervised learning methods to distil transferable feature
representations.

iii. Exploring unsupervised domain adaptation (UDA) techniques to improve the
generalization capability of deep learning models to unseen testing scenarios.



Spatiotemporal Structural Information

Tables Credit: from the paper DENETHOR
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¢ L. Kondmann, A. Toker, M. RuBwurm, A. Camero, D. Peressuti, G. Milcinski, P.-P. Mathieu, N. Longépé, T. Davis, G. Marchisio et al., “Denethor: The dynamic earthnet dataset for harmonized,
inter-operable, analysis-ready, daily crop monitoring from space,” NeurlPS Track on Datasetsand Benchmarks, 2021.




Unsupervised Representation Learning

* Disentangled Representation Learning
* Image-to-Image (121) Translation

e Deep Clustering Methods
* Adapting traditional clustering methods for being differentiable

* Deep Generative Models
 GANs, VAEs, Flow-based Models, ......

 Self-Supervised Learning (SSL)
* Pretext tasks, Contrastive Learning, ......



Unsupervised Domain Adaptation (UDA)

Domain Adaptation refers to
developing algorithms that can
generalize well to the target domain by
training models on a semantic related
but distribution different source
domain.

* Kou, Rong, et al. "Progressive Domain Adaptation for
Change Detection Using Season-Varying Remote Sensing
Images." Remote Sensing 12.22 (2020): 3815.

Figure 7. Overview of dataset II with major seasonal variation and corresponding reference change

maps: (a) pre-event images, (b) post-event images, (c) references.



Adversarial Domain Adaptation

CyCADA: Cycle-Consistent Adversarial Domain Adaptation
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* Hoffman, Judy, etal. "Cycada: Cycle-consistent adversarial domain adaptation." International conference on machine learning. PMLR, 2018.



Recently-released Large-scale Benchmark Datasetsin the
Remote Sensing Community

 DENETHOR (NeurlIPS 2021, Vegetation Monitoring)

* Multi-Temporal Urban Development SpaceNet Dataset (MUDS) (CVPR
2021, Urban Growth Monitoring)

e L. Kondmann, A. Toker, M. RuBwurm, A. Camero, D. Peressuti, G. Milcinski, P.-P. Mathieu, N. Longépé, T. Davis, G. Marchisio et al., “Denethor: The dynamic earthnet dataset for
harmonized, inter-operable, analysis-ready, daily crop monitoring from space,” NeurlPS Track on Datasets and Benchmarks, 2021.

¢ A. Van Etten, D. Hogan, J. M. Manso, J. Shermeyer, N. Weir, and R. Lewis, “The multi-temporal urban development spacenet dataset,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2021, pp. 6398-6407.



* Remote Sensing (e.g., Crop Type Mapping, Change Detection),
ProgrESS TO Date Deep Generative Models, Deep Clustering Methods, Video
. . Understanding, Time-Series Analysis, Transformers, ... ...
Literature Review
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Progress To Date

Basic Usage of
SLURM-based HPC
for Distributed
Training

e SLURM commands, Configuration
of Virtual Environments, Horovod,
Torch.Distributed

Toolboxes &
Packages for
Processing EO Data

e geopandas, eo-learn, sentinelhub,
radiant-mlhub, rasterio, fiona
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Progress To Date
Al4FoodSecurity Challenge

* Building a preprocessing pipeline dedicated to EO
data (using specialized toolboxes) anet. fl
e Testing the combination of ResNet18 + TempCNN o Radiant Fartl
5 P Tlm a I( ;l(llll\l::lllil({l]; |. :

* Testing the state-of-the-art crop classification

model: PselTae ¥AI4F00“SBG“"I

* Testing FocalBCE Loss for imbalanced classes

* Modifying a recently proposed Vision Transformer , A|4E0) .
Model (CPVT) for processing time-series data A

* Garnot, Vivien Sainte Fare, and Loic Landrieu. "Lightweight Temporal Self-attention for Classifying Satellite Images Time Series." International Workshop on Advanced Analytics and Learning on
Temporal Data. Springer, Cham, 2020.
* Chu, Xiangxiang, et al. "Conditional positional encodings for vision transformers." arXiv preprint arXiv:2102.10882 (2021).
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Al4FoodSecurity Challenge Leaderboard

Leaderboard

Your best submission will appear on the leaderboard.

Entries: 8
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Lasts

MEOTEQ

Last submiss

Adrian Cal
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4.436
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4.795

5.092
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5.396

8.692

14.509

Leaderboard

Your best submission will appear on the leaderboard

Entries: 8
TEAM
EagleEyes

Last su
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maZ2okalab

Last sub

Vecxoz

Last submission: 10 days ago

SCORE

3.828

3.901

3.908

3.928

6.008

6.522

7.015

13.584



Research Activities Planned

e 1st Research Focus — Spatiotemporal Learning (the primary focus in the following 10 months)

* Investigate methods proposed for video understanding/video action recognition and other research
fields which involve spatiotemporal learning to study how the spatiotemporal structural information
can be exploited.

* |nvestigate methods proposed for multivariate time-series analysis to study how to deal with
problems related to time-series data such as imputation and forecasting.

* |nvestigate methods proposed for 3D point cloud processing or Graph Convolutional Neural
Networks (GCNs) to study how irregular data can be efficiently processed by deep learning models.

Submit at least one paper to international conferences or journals before the confirmation
assessment:

* Remote Sensing, IEEE Transactions on Geoscience and Remote Sensing,

* |EEE International Geoscience and Remote Sensing Symposium (IGARSS),

* |EEE Geoscience and Remote Sensing Magazine,

* British Machine Vision Conference (BMVC)



Summary of Progress

Literature Review
Basic Distributed Training on SLURM-based HPC
Al4FoodSecurityChallenge

Toolboxes&Packages for Processing EO Data
Preparation for 100-day Viva

Reproducing Results of State-of-the-art DL Models
Adapting Spatiotemporal Frameworks for SITS Data

Designing Experiments to Verify the Proposed Improvements
Preparing a Paper for Submission

Implementing Established 121 Models for Exploring Multi-Modal Data
Implementing Established Self-Supervised Learning Models

Geospatial Data Analysis Libraries (TorchGeo)

Multiprocessing & Distributed Training
Geometric Deep Learning Courses

Algorithms for Massive Data Set Analysis

Confirmation Assessment

To Date & Training Planned

Sep-21 Oct-21 Nov-21 Dec-21 Jan-22 Feb-22 Mar-22 Apr-22 May-22 Jun-22 Jul-22
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