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Background: Satellite Image Time Series (SITS)
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Figure: SITS from Sentinel-2
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Background: SITS = Video?
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= Arnab, Anurag, et al."Vivit: A video vision transformer.” CVPR. 2021
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= RuBwurm, Marc, et al.” C i LSTMs for cloud-robi ion of remote sensing

imagery.” arXiv preprint (2018).

M Rustowicz, Rose, et al.” Semantic segmentation of crop type in Africa: A novel dataset and
analysis of deep learning methods.” CVPR Workshops.2019.
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Background: SITS or TSSI?
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(d) TSViT

(c) TSSI = Image Grlds of TS

®  Garnot, Vivien Sainte Fare, et al.”Satellite image time series classification with pixel-set encoders and temporal self-attention.” CVPR. 2020.

= Tarasiou, Michail, et al" ViTs for SITS: Vision Transformers for Satellite Image Time Series.” CVPR. 2023
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Motivation: SITS (TSSI) is a NEW data modality

m Two data storage format for SITS: pixel-set format (T x C x N) and image
sequence format (T x C x H x W) (e.g., PSE4TAE only works with pixel-set
format, and TSViT treats SITS as image sequences)

m Pixel-set format is a resource-efficient format for pre-training

m Characteristics of the temporal dimension of SITS: Irregularity &
Asynchronization

m Do we really need to build bespoke neural architectures for SITS?
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\ (a) TSSI

(Image Grids of Temporal Set Observations ]

Static Covariates (c.g.,
o o o elevation, long.& lat.)
Dynamic Covariates

(e.g., time, temp.)

Temporal Covariates

(b) Reformulation of SITS representation
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Method: A Novel Learning Paradigm — Exchanger

m Self-attention is not suitable for modelling complex temporal relations in

Time Series.
m Irregularity & Asynchronization in the temporal axis.
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(a) The schematic illustration of the proposed collect—update—distribute process for generic representation learning of SITS.
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= Zeng, Aliling, et al.”" Are transformers effective for time series forecasting?.” AAAI 2023.
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od: A Specific Instantiation

> COLLECT

v 1 v T 1 T
C¥ = Concaty, (Softmax (ﬁc wR (VW) + Ecpuﬁ (PuK) ) vth> 1)

> UPDATE
T T
C" =C"+MLP, (LayerNorm(C") )
C" = C" + MLP; (LayerNorm (C")) (2)
> DISTRIBUTE
Z = Concaty, (Softmax (LVWQ (C"WK)T + LPl’.'lQ (CPUK) T) CVWV)
m h h m h h h
Z' = Concat (Z, V) Wp,oj
V' =Z' 4 FFN (Z') (3)

= Yang, Chenhongyi, et al. "GPViT: A High Resolution Non-Hierarchical Vision Transformer with Group Propagation.” arXiv preprint (2022).
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Method: Distinct Advantages

m subsumes PSE+TAE and TSVIT as special cases

m works well both with the pixel-set (T x C x N) and image
sequence (T x C x H x W) format

m a resource-efficient pretrain (pixelset format) -finetune
(image sequence format) paradigm for SITS

m linear computational complexity w.r.t. the length of input
sequence

m streamlined dense prediction pipeline of SITS
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Method: SITS is no longer an isolated island
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(a) Previous dense prediction pipeline of SITS.
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(b) Streamlined dense prediction pipeline of SITS.

= Garnot, Vivien Sainte Fare, et al.”" Panoptic segmentation of satellite image time series with convolutional temporal attention networks.” CVPR. 2021.
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(a) Convergence analysis for Exchanger+Unet with pre-trained backbones or training from scratch on PASTIS validation dataset (Fold-1).
The left figure shows the training and validation losses. The right figure shows the evaluation metric mloU on the validation dataset.

m Exchanger+Mask2Former cannot be trained completely from scratch.
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Experimental Results: Semantic Segmentation

0
PA;n'Il(I)SU (I<jl)'|'LCC #Params(M)|FLOPs
FPN + ConvLSTM 57.1 73.7 1.45 714G
Unet + ConvLSTM 57.8 76.2 2.33 55G
Unet-3D 58.4 75.2 1.55 92G
U-TAE 63.1 77.1 1.09 47 G
TSVIT 65.4 84.8 2.16 558 G
Exchanger+Unet 66.8(+1.2) | 90.7 8.08 300G
Exchanger+Mask2Former |67.9(4+1.2)| 90.5 24.59 329G

Table: Comparison with SOTA models on PASTIS and MTLCC test dataset. The figure in parenthesis denotes the standard deviation across
the official 5-Fold splits in PASTIS. FLOPs are calculated based on a single SITS sample with T x C x H x W =30 x 10 x 128 x 128.
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Experimental Results: Panoptic Segmentation

‘ SQ ‘ RQ ‘ PQ ‘#Params(M)‘FLOPs‘IT(s)
Unet+ConvLSTM+PaPs 80.2 43.9 35.6 2.50 55G | 660
U-TAE+PaPs 81.5 53.2 43.8 1.26 47G | 207

Exchanger+Unet+PaPs | 80.3(40.1) | 58.9(+0.6) | 47.8(+0.4) 9.99 301G | 252
Exchanger+Mask2Former |84.6(+40.9)|61.6(+1.6)/52.6(+1.8)] 24.63 332G | 154

Table: Comparison with SOTA models on PASTIS test dataset. The figure in parenthesis denotes the standard deviation across the official

5-Fold splits in PASTIS. FLOPs are calculated based on a single SITS sample with T x C x H x W = 30 x 10 x 128 X 128. Inference
Time (IT) is calculated on Fold-1 with & 490 sequences on a single A100 GPU.
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Experimental Results: Visualisations
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Figure: Qualitative results from predictions of Exchanger+Mask2Former. Please note the semantic & panoptic segmentation models are separately
trained.
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Conclusion

m reformulate SITS representation as image grids of temporal set
observations

m explicitly decompose the representation learning procedure of
SITS into three steps: collect—update—distribute

m the successful introduction of resource-efficient pretrain-finetune
paradigm into SITS for the first time

m a streamlined dense prediction pipeline and marked performance
gains over the previous SOTA models
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Thanks for listening
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