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1. Introduction
An increasing number of satellites have been monitoring dynamic spatial-temporal
processes on the Earth’s surface and continuously generating massive amounts of
data. For instance, the Sentinel 2 multispectral satellite constellation acquires data
at up to 10m resolution in 13 spectral bands every two to five days. Despite the rapid
development of remote sensing systems, the abundance of generated data has not yet
been fully exploited. A large body of 7.76 TiB Sentinel 2 data was published on a
daily basis. Still, only 7.6% of all published images in 2018 have actually been down-
loaded. Accordingly, 12 out of 13 published images remain unused. Similar phenom-
ena can be observed for the Sentinel 1, 3, and 5 missions. Traditional methods used
to deal with remotely sensed data are heavily reliant on hand-crafted features, such
as Normalized Difference Vegetation Index (NDVI), Normalized Difference Water In-
dex (NDWI), Brightness Index (BI), Inverted Red-Edge Chlorophyll Index (IRECI),
and Enhanced Vegetation Index (EVI), followed by machine learning algorithms such
as Random Forest (RF) and Support Vector Machine (SVM) for making predictions.
Despite the achieved satisfactory performance, the preprocessing pipeline requires
extensive domain-specific expertise and causes excessive computational burden, im-
peding the exploitation of the full potential of continuously growing satellite data.

Recent years have witnessed the impressive achievements made by deep learning
models in many research fields, such as Computer Vision (CV), Natural Language Pro-
cessing (NLP) and Automatic Speech Recognition (ASR). The dominant feature of deep
learning models is to integrate feature extraction and task-specific prediction into a
unified architecture, allowing joint optimization and obviating the need for laborious
manual feature engineering. In particular, this characteristic also implies the suitabil-
ity of employing deep learning techniques to tackle challenges in the field of remote
sensing, given the fact that models that do not strictly require extensive data prepro-
cessing would facilitate the efficient utilization of publicly available satellite data. In
fact, there has been a growing interest in applying deep learning techniques to address
remote sensing problems in recent years, such as land use/land cover classification[1,
2], crop type classification[3, 4, 5, 6, 7], change detection[8, 9], saliency detection[10],
super-resolution[11, 12], and multi-modality information fusion[11, 12, 13]. Despite
the attained promising results, there are still many challenges needed to be addressed
for the successful application of deep learning in the field of remote sensing. Firstly,
unlike the universal applicability of ResNet[14] in computer vision tasks, neural ar-
chitectures appropriate for processing satellite data have not yet been established. For
instance, researchers have proposed to use Convolutional Neural Networks (CNNs),
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Recurrent Neural Networks (RNNs), the combination of these two architectures, or
the attention mechanism to tackle the classification problem of Satellite Image Time
Series (SITS) data. Recently, it has been demonstrated in [3] that temporal informa-
tion is much more important than spatial features in the classification problem of SITS
data, because the resolution of sentinel 2 images restricts the richness of texture infor-
mation, thereby damaging the logic of CNNs. Therefore, model complexity should be
largely allocated to the temporal component when designing hybrid models. Due to the
characteristics of satellite data, such as multi-spectral and multi-temporal, exploring
neural architectures which are more suitable for processing them is still of signifi-
cant importance. Besides, the remarkable success of current deep learning-based re-
mote sensing systems has been achieved in a fully supervised fashion, requiring large
amounts of annotated data. Semi-supervised or unsupervised representation learn-
ing has received increasing attention in other research areas, particularly benefiting
from advances in deep generative models. However, it has been rarely explored in the
field of remote sensing. Several primitive attempts [15, 16] relied mainly on using au-
toencoders to reconstruct the input data, which serve as auxiliary supervision to com-
pensate the scarcity of annotated data. Recent research [17] has presented a frame-
work which combines Variational Auto-Encoders (VAEs) and Generative Adversarial
Networks (GANs) to distil disentangled feature representations from SITS data in an
unsupervised manner, showing the great potential of unsupervised pre-training and
setting a precedent for further exploring this research direction. Last but not least,
multi-modality information fusion plays a vital role in remote sensing, as it allows for
the use of complementary multi-modal information captured by different types of sen-
sors, in the visible spectrum or not, from satellites or planes, with various spatial pre-
cision. Multi-modal image registration techniques are at the core of realizing multi-
modality information fusion. While it has long been a predominant topic in the field of
remote sensing, deep learning-based multi-modal image registration methods specif-
ically designed for remotely sensed data has rarely been explored. Moreover, how to
combine the registration network with its subsequent networks for downstream tasks
in an end-to-end fashion is still an open problem. Recently, several pioneering works
have explored to integrate the registration component explicitly [11] or implicitly [12]
into a unified architecture for Multi-Frame Super-Resolution (MFSR), demonstrating
the great potential of multi-modality information fusion. Due to the broad spectrum
of applications in the field of remote sensing, there are inevitably many challenges
specific to a particular application scenario, which may be further considered in my
future research.

To summarize, the primary research objectives are as follows:

• exploring the neural network design space to identify more effective neural ar-
chitectures which accommodate the characteristics of remote sensing data;

• developing unsupervised representation learning methods to fully exploit large
amounts of unlabelled data, especially by leveraging advances in generative deep
learning;

• developing deep learning-based multi-modal image registration models for fusion
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multi-source remotely sensed data;

• developing unified neural architectures which realize image registration through
their built-in components and can be trained in an end-to-end fashion for the
exploitation of multi-modality remote sensing data.

2. Related Work

2.1 Various Neural Architecture Designs
Recently, a wide range of deep neural network architectures has been proposed to
deal with remote sensing data. Generally, CNNs, RNNs, self-attention networks, and
their combined variants have been successfully applied to address many problems in
the field of remote sensing, such as classification of SITS data[4, 2, 5, 6] and change
detection[8, 9]. Most of the work simply adapted well-established deep learning mod-
els in CV, NLP or ASR to process remote sensing data, failing to accommodate their
characteristics. Several recent works have shed light on architecture designs based
on comprehensive empirical evaluations. In [3], the authors have discovered that the
temporal structure of Sentinel 2 data is richer than the spatial structure for crop type
classification, and consequently proposed to allocate most of the parameters (up to
90%) to model the temporal structure when designing hybrid models. In [18], the
authors have observed that preprocessing can consistently improve the overall clas-
sification accuracy for all models, which challenges the superiority of deep learning
models in processing remote sensing data, that is removing the need of heavily re-
lying on domain-specific expertise (preprocessing techniques). However, they further
discovered that self-attention networks and RNNs performed competitively well on
raw data compared to preprocessed data. Based on these observations, researchers
in[7] have proposed a novel architecture to process SITS data, leveraging advances
in 3D point cloud processing. Specifically, they regarded medium-resolution (10m per
pixel) Sentinel 2 images as sets of unordered elements and consequently introduced
the pixel-set encoder inspired by the work [19] as an efficient alternative to CNN en-
coders, followed by the bespoke transformer architecture[20] for modelling temporal
relations.

2.2 Unsupervised Representation Learning for Satellite Data
The impressive performance that has been attained by existing deep learning-based
remote sensing models can be largely attributed to supervised learning, which re-
quires enormous amounts of annotated data. Due to the laborious annotation pro-
cess of multispectral satellite data and the overfitting problem caused by supervised
training, it is beneficial to explore unsupervised representation learning methods to
enhance the efficient utilization of data and the generalization ability of extracted
feature representations. Recently, deep learning-based unsupervised representation
learning has attracted increasing attention, which can be generally subsumed under

Page 3 of 14



Xin Cai xincai00@gmail.com

three categories: (i) deep generative learning-based methods, (ii) self-training-based
methods, and (iii) self-supervised learning-based methods.

There has been rapid progress made in deep generative models, such as GANs[21],
VAEs[22], deep autoregressive models[23], normalizing flow-based models[24] and
their hybrid variants[25, 26, 27]. The core motivation of using generative models
to perform unsupervised representation learning is that the capability of capturing
rich and complex distributions of modelled data arises from identifying intrinsic and
meaningful structures of modelled data, therefore being able to benefit downstream
tasks. For example, it has been demonstrated that adversarial autoencoder (AAE)
[26] can be employed to perform semi-supervised learning, disentangling style and
content of images, and unsupervised clustering. Closely related to unsupervised rep-
resentation learning, there has been an emerging trend to learn disentangled feature
representations using deep generative models, especially using various adversarial
losses to regularize the feature extraction process. Identifying factors of variation in
the modelled dataset is beneficial for extracting task-specific features and isolating
undesirable noise factors. For example, InfoGAN [28] and β-VAE [29] are introduced
to learn interpretable factorized features in an unsupervised manner. A two-step dis-
entanglement method[30] is used to extract label relevant information for image clas-
sification. Moreover, disentangled representation learning has enabled great success
in Image-to-Image (I2I) translation[31, 32, 33, 34] and Unsupervised Domain Adapta-
tion (UDA)[35, 36]. UDA has been gaining increasing attention in image classification,
object detection, and semantic segmentation[37], aiming at improving the generaliza-
tion ability of deep learning models on unseen scenarios. In the pioneering work [17],
researchers have presented a framework combining VAE and GAN methods to learn
disentangled representations for SITS data in an unsupervised manner. The disen-
tangled representations can isolate common information of the entire time series data
from exclusive information specific to each image and have proven to be useful for sev-
eral downstream tasks, such as image classification, image retrieval, image segmen-
tation and change detection.

Apart from deep generative learning-based methods, there have been other types
of research attempts to tackle unsupervised representation learning. Self-training-
based methods[38, 39] chiefly follow the paradigm of alternately performing clustering
and supervised learning, in which clustering algorithms are used to generate pseudo
labels to serve as supervisory signals, leading to general-purpose feature representa-
tions. Additionally, self-supervised learning as an emerging research field has been
actively studied in recent years[40, 41, 42], where discriminative approaches have
been adopted rather than generative methods based on the assumption that pixel-
level generation is computationally costly and may not be necessary for representation
learning. One of the most common strategies for self-supervised learning is to predict
future, missing or contextual information. For example, recent work in unsupervised
learning has successfully used these ideas to learn word representations by predicting
neighbouring words[43]. For images, predicting colour from grey-scale[44] or the rela-
tive position of image patches[45] has also been shown useful for extracting high-level
features.
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2.3 Multi-Modal Image Registration and Information Fusion
Multi-modality information fusion is of prime importance for a variety of applications
in remote sensing, as multi-modal sensors allow gathering a wide range of physical
properties, which are complementary and yield richer scene representations. The re-
alization of multi-modal information fusion relies on reliable image registration tech-
niques. Classic (mono- or multi-modal) image registration techniques attempt to warp
a source image to match a target one via a non-linear optimization process, seeking
to maximize a predefined similarity metric [46]. The slow optimization process and
the difficulty of manually designing local descriptors and similarity metrics have led
to the recent development of deep regression models. Concretely, mono-modal image
registration can be decomposed as the rigid transformation which can be captured
by a global affine transformation matrix and local non-rigid deformations which are
generally characterized by dense displacement vector fields. Early research methods
have attempted to learn the parameters related to linear and non-linear transforma-
tions through supervised learning [47, 48, 13]. These methods require ground truth
deformation fields which are extremely hard to collect and thus synthetically gener-
ated. The downside of these supervised methods is that synthetic deformation ground
truths are based on human prior knowledge or conventional image registration algo-
rithms, meaning that these methods cannot fully capture the diversity of real-world
correspondence or the performance is limited by those conventional methods. There-
fore, many research efforts have been devoted to unsupervised approaches [49, 50, 51],
i.e., learning spatial transformations guided by similarity metrics and with smooth-
ness regularization. Multi-modal image registration presents more challenges than
its mono-modal counterpart due to the difficulty of measuring similarity across dif-
ferent modalities, which may cause significant appearance variations. Several recent
research efforts [52, 53] have shown promising results by leveraging advances in deep
generative models, especially those related to I2I translation [31, 32, 33, 34]. The
principle of these methods is to employ I2I translation techniques to convert the mov-
ing image (to be registered) to the modality identical to the reference/fixed image,
thereby circumventing the difficulty of manually devising multi-modal similarity met-
rics. Such registration techniques are focused primarily on medical image registration
tasks, which have rarely been explored in remote sensing setting.

An important application in the field of remote sensing is MFSR, which aims to
reconstruct hidden high-resolution details from multiple low-resolution views of the
same scene. While Single Image Super-Resolution (SISR) has attracted much atten-
tion in the computer vision and deep learning communities [54, 55] in the last decade,
not much work has explored the end-to-end deep learning system for the more general
setting of MFSR, which needs to address the additional challenges of co-registration
and fusion of multiple low-resolution images. Recently, there are several pioneering
works in MFSR with remote sensing data. In [12], the authors have presented the first
deep learning architecture–HighRes-net, which learns its sub-tasks in an end-to-end
fashion: (i) co-registration, (ii) fusion, (iii) up-sampling, and (iv) registration-at-the-
loss. DeepSUM [11] is also a recently proposed approach that exploits both spatial
and temporal correlations to perform MFSR, which consists of three components: (i)
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the SISR network, (ii) the registration network, and (iii) the fusion network.

3. Methodology
The literature review section 2 has covered representative research work in remote
sensing using deep learning techniques, providing a solid foundation on which my
future research will be conducted.

3.1 Neural Architecture Design
As stated in 2.1, recent research[3] has shown that the relatively low spatial reso-
lution of multi-temporal satellite images may challenge the justification of adopting
CNNs as spatial encoders as texture and shape information in these satellite images
is limited. In [7], researchers have proposed an innovative alternative the pixel-set
encoder by regarding satellite images as sets of unordered elements. Indeed, signifi-
cant advances have been made in 3D point cloud processing[19, 56, 57], giving rise to
various powerful set encoders and decoders. Besides, a closely related and emerging
research field is Graph Convolutional Networks (GCNs)[58, 59, 60], aiming at gen-
eralizing convolutions to non-Euclidean data. As a result, exploring the potential of
adapting such set encoders/decoders and GCNs to process satellite data, especially
SITS data, is a promising research direction. Furthermore, these novel architectures
may allow for designing operators that can simultaneously process spatial-temporal
data rather than using separate components adopted by most existing methods.

3.2 Joint Discriminative and Generative Learning
The second primary objective for my future research is to develop unsupervised rep-
resentation learning methods for remote sensing data. The section 2.2 has given an
overview of current representative solutions, including (i) deep generative learning-
based methods, (ii) self-training-based methods, and (iii) self-supervised learning-
based methods. Firstly, integrating deep generative components into current discrim-
inative frameworks to achieve the efficient utilization of satellite data, especially un-
labelled data, is a promising research direction. Besides, it has been reported that
deep learning models trained on the source domain are likely to encounter dramatic
performance degradation when deployed on a novel target domain in a variety of appli-
cations, such as semantic segmentation[61, 62] and person re-identification[63, 64] in
CV, which has spurred the development of UDA techniques[35, 36]. While this prob-
lem has rarely been studied in the remote sensing community so far, it is reasonable to
assume the existence of such a phenomenon. For example, satellite images captured
in different regions and seasons may exhibit significant appearance differences caused
by various factors, such as meteorological conditions, illuminations, and terrain condi-
tions. The domain shift problem coupled with heterogeneous sensors (i.e., multi-modal
information fusion, which will be discussed in the next section) used to capture these
data would complicate the situation even further. Taking it a step forward, it is of
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significant importance to study the generalization ability of current deep learning-
based remote sensing systems. One of the most promising strategies to enhance the
robustness and generalization ability of feature representations is to distil disentan-
gled feature representations. For example, the pioneering work[17] has demonstrated
the usefulness of decomposing feature representations of SITS data into the common
component encoding information shared by the entire time series and the exclusive
component encoding information specific to each image in the time series. Design-
ing various adversarial losses to regularize the feature embedding space is a feasible
scheme to achieve feature disentanglement, which also suggests the importance of in-
jecting generative components into discriminative frameworks. Lastly, self-training
and self-supervised learning techniques are beneficial for extracting robust feature
representations without annotated data. To the best of my knowledge, leveraging ad-
vances in these research fields to devise deep learning-based remote sensing systems
has rarely been explored so far.

3.3 Multi-Modal Information Fusion
In remote sensing, images of the Earth can be acquired by different types of sensors,
in the visible spectrum or not, from satellites or planes, with various spatial precision.
The analysis of these images captured by multi-modal sensors allows the monitoring
of ecosystems and their evolution (drought monitoring, natural disasters and asso-
ciated help planning), urban growth, as well as the automatic creation of maps or
more generally digitizing the Earth. As stated in the section 2.3, multi-modal im-
age registration is indispensable for multi-modality information fusion. Currently,
learning-based mono-modal image registration techniques[49, 50, 51] have shown su-
periority over traditional registration methods because of replacing costly optimization
with expeditious inference (i.e., the forward-pass of neural networks). Multi-modal
image registration has also gained increasing attention since several early research
attempts [52, 53] discovered that I2I translation techniques can be used to realize
cross-modality conversion, which allows training the registration network using sim-
ple and reliable mono-modality similarity metrics. Given the fact that the majority of
advances has been made in the setting of medical image registration, it is worthwhile
to adapt these approaches for remote sensing applications by adhering to the same
principle. Furthermore, as demonstrated by recent work in MFSR [11, 12], there are
many challenges needed to be addressed to devise an end-to-end deep learning model
which incorporates image registration as its subcomponent. Therefore, the third objec-
tive for my future research is to develop unified neural architectures which can realize
image registration through their built-in components and be trained in an end-to-end
fashion for the exploitation of multi-modality remote sensing data.

4. Timeline
Generally, I plan to divide the period of three years of working towards a PhD degree
into two parts: 1) the first two years will focus on publishing three papers on interna-
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tional conferences or journals with potential research topics surrounding around those
stated in section 3.1, 3.2, 3.3, respectively; 2) the final year will be used to complete
my PhD dissertation by summarizing the previous work.

The detailed timetable of the first two years are outlined as follows:

• 1 ∼ 4 months: conducting a comprehensive literature review and selectively re-
producing results of some representative research work, revolving around the
central topic: developing novel neural network architectures by leveraging ad-
vances in 3D point cloud processing and GCNs;

• 5 ∼ 8 months: proposing my own methods and publishing on international con-
ferences or journals, striving to establish a simple but strong baseline model for
processing SITS data by conducting rigorous ablation studies;

• 9 ∼ 12 months: conducting a comprehensive literature review and selectively
reproducing results of some representative research work, revolving around the
central topic: developing unsupervised representation learning methods to fully
exploit large amounts of unlabelled satellite data, by leveraging advances in deep
generative models, self-training and self-supervised learning;

• 13 ∼ 16 months: proposing my own improvements and publishing on interna-
tional conferences or journals with a particular focus on extracting robust and
generalizable feature representations without using annotated data;

• 17 ∼ 20 months: conducting a comprehensive literature review and selectively
reproducing results of some representative research work, revolving around the
central topic: developing unified neural architectures which can realize image
registration through their built-in components and be trained in an end-to-end
fashion for the exploitation of multi-modality remote sensing data;

• 21 ∼ 24 months: proposing my own methods and publishing on international
conferences or journals;
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