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1 Research Aims & Objectives
Variability in Satellite Image Time Series (SITS) due to various reasons, especially the inherent
volatility influenced by geographical and climatic/meteorological conditions, causes significant
challenges for building crop type classification systems based on SITS. For example, crop
classification models based on deep neural networks have difficulty in generalizing to test
data collected in geographical regions or in years different from the one used for training [1],
consequently largely restricting its applicability. The hypothesis is the lack of effective
mechanisms to identify the underlying generative process that is flexible enough to explain the
observed variability caused by geographical and temporal changes, which calls for probabilistic
models or generative classifiers. Additionally, probabilistic modelling and inference is a long-
standing endeavour in the machine learning community and plays a pivotal role in modern
pattern recognition. For example, latent variable models and the Expectation-Maximization
(EM) algorithm [2] have been the backbone of statistical modelling for decades.

However, there has been little exploration in probabilisticmodelling for crop type classification
using SITS, not to mention deep probabilistic models 1. To the best of my knowledge, the
existing probabilistic crop classification models still are built upon Probabilistic Graphical
Models (PGMs), such as Markov Random Fields [3] or Hidden Markov Models [4,5]. Therefore,
my research attempts to transfer the success of deep generative models in other research areas
to SITS analysis, especially for crop type classification. To be more concrete, deep generative
models that will be reviewed in Sec. 2.2, including Normalizing Flows (NFs), Variational
AutoEncoders (VAEs), and Dynamical Variational AutoEncoders (DVAEs), will be explored for
improving classification accuracy and data efficiency compared to the current non-probabilistic
deep crop classification models that will be reviewed in Sec. 2.1, where the latter objective,
i.e., data efficiency, is a natural byproduct of using generative models as NFs and VAEs have
proven to be effective in semi-supervised or unsupervised learning [6–12]. The structure of PhD
thesis is outlined in Fig. 3. The three main chapters constituting the methodological part of the
thesis will closely revolve around applying the latest advances in NFs, VAEs and DVAEs for
achieving the proposed two objectives for crop type classification, where necessary modifications
or innovations will be made to accommodate the characteristics of crop phenology reflected
through different types of space-borne sensors such as multi-spectral information in Sentinel-2
data.

To sum up, the contributions of my PhD research will be as follows:

• Applying deep generative models, i.e., NFs, VAEs, and DVAEs, to process SITS for
improving accuracy in crop type classification;

• Extending the proposed deep generative models to perform semi-supervised learning
while maintaining the incurred accuracy drop at an insignificant level, i.e., improving data
efficiency for crop type classification;

• Conducting extensive experiments to verify the effectiveness of proposed deep generative
models (i.e., ablation studies2) on publicly available benchmark datasets (Sec. 3) and
make comparisons to the state-of-the-art deep crop classification models.

1Despite the potential abuse of terminology, deep probabilistic models and deep generative models will be used
interchangeably in the report.

2Ablation studies is the terminology in Deep Learning literature, which refers to independently assessing the
effectiveness of proposed various components.
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2 Literature Review

2.1 SITS-based Crop Analytics
Crop type mapping using Satellite Image Time Series (SITS) has received considerable attention
because of its huge potential in crop phenology study, crop yield prediction, facilitating informed
decisions on subsidy grants, and food security estimation. With the increasing availability
of satellite data, significant research efforts have been devoted to developing automated tools
for efficient analysis. Traditionally, manually crafted features, such as vegetation indices [13],
combined with machine learning algorithms, such as Random Forest classifier [14] and Support
Vector Machine [15], have been the norm for crop classification. Recently, deep learning-based
models have dominated the research field by adapting neural architectures developed in other
domains, especially in computer vision and natural language processing. The existing approaches
generally fall into two categories, 1) pure time-series models, and 2) the combination of spatial
and temporal encoders. The former one is focused on capturing temporal dynamics by using
sequential neural models, such as Recurrent Neural Networks [16,17], Temporal Convolution
Neural Networks [18,19], and self-attention models [20]. The latter one argues that extraction
of spatial features using neural networks is superior to simple statistics, mainly following the
paradigm of obtaining spatial embeddings with spatial encoders and then processing these
embeddings sequentially with temporal encoders. Along this line of research, recent work [21] has
pointed out that convolutions are not well-suited for extracting spatial features from satellite data
for crop classification due to the highly irregular boundaries of parcel fields and limited texture
patterns available. Consequently, the researchers have proposed to use Pixel-Set Encoder [21]
to obtain learnable statistical descriptors, which is inspired by advances in 3D point cloud
processing [22]. The resulted spatial embeddings are then processed by temporal encoders using
the self-attention mechanism [23], leveraging its power for capturing long-range dependencies.
Furthermore, the lightweight temporal attention module has been proposed in [24] by dividing
feature vectors into different groups with specialized attention weights calculated for each group.
This module can be considered as a strengthened extension of group convolution, which is the
core computing unit of ResNeXt [25].

2.2 Deep Generative Models
In the literature, deep generative models can be roughly divided into two groups: likelihood-
based and likelihood-free models, as shown in Fig. 1. Likelihood-free models aim to make
generated samples resemble the realistic data as close as possible without explicitly assuming
the form of the likelihood function, such as the recently prevalent Generative Adversarial
Networks (GANs) [26] which minimize the discrepancy between the generating and the true
data distributions through accurately classifying synthetic or realistic samples. The cost of
simulation required for parameter learning of likelihood-free models is generally prohibitive.
Energy-Based models (EBMs) characterize the data distribution with an energy function, e.g.,
the Boltzmann/Gibbs distribution, whose configuration forces realistic samples to reside in the
low-energy area. The optimization of EBMs relies on Markov Chain Monte Carlo (MCMC)
techniques to sidestep the intractable computation of the normalizing constant/partition function,
which is known to be computationally demanding due to the long mixing time of MCMC,
especially in the high-dimensional space. It should be noted that there has been rapid progress
in recent years concerning improving the computational efficiency of either likelihood-free
models [27] or EBMs [28]. But these two kinds of approaches are excluded from my current
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Figure 1: The taxonomy of deep generative models.

stage of research because of the limited energy and time. Instead, my research will be focused on
AutoRegressiveModels (ARs), Normalizing Flows (NFs), Variational AutoEncoders (VAEs), and
its extension to sequential latent variable models, i.e., the Dynamical Variational AutoEncoders
(DVAEs), which will be detailed in the following sections. ARs are built upon the simple idea of
decomposing the probability density into a series of conditionals by the product rule. The relevant
advances mainly concentrate on architectural designs and practical implementations [29–31],
and therefore ARs are not reviewed specifically in this report. Also, these methods are intimately
connected with each other, and such connections will be discussed where appropriate.

2.2.1 Normalizing Flows

Normalizing Flows (NFs) are a family of likelihood-based generative models, characterized by
employing a series of bijective transformations to transform a simple base probability measure
to an arbitrarily complicated one. Several merits of NFs include exact log-likelihood evaluation,
efficient inference and sampling procedures, and universal representational power in theory,
resulting in a considerable research interest in theoretical and practical development of NFs. The
central idea of NFs can be formulated as in Eq. (1), which is the well-known change of variables
formula:

x = ) (u) Fℎ4A4 u ∼ ?D (u)
?G (x) = ?D (u) |det�) (u) |−1 (1)

where x and u are both � dimensional random vectors, the transformation ) must be invertible
and differentiable, and �) (u) denotes Jacobian of the transformation ) as shown in Eq. (2):
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�) (u) =

m)1
mD1

· · · m)1
mD�

...
. . .

...
m)�
mD1

· · · m)�
mD�

 (2)

The Jacobian determinant det�) (u) quantifies the contracted or expanded volume induced by
the transformation ) in a small neighborhood of u. More importantly, the chain of invertible and
differentiable functions remains invertible and differentiable, which is critical to constructing
flexible probability distributions and conforms well to the architectural design principle of deep
neural networks. The Jacobian determinant of the composition of a series of invertible and
differentiable functions )1, )2, . . . , ): is characterized by Eq. (3):

(): ◦ · · · ◦ )2 ◦ )1)−1 = )−1
1 ◦ )

−1
2 ◦ · · · ◦ )

−1
:

det�):◦···◦)2◦)1 (u) = det�): ():−1 (u)) · · · det�)2 ()1 (u)) · det�)1 (u) (3)

The universal representation capability of NFs has been proved in [32,33], which lays the
theoretical foundation of utilizing NFs to model arbitrarily complex probability distributions,
e.g., by minimizing some kind of divergence or discrepancy measures as shown in Eq. (4):

L (\) = �KL
(
?∗G (x) ‖?G (x; \)

)
= −E?∗G (x)

[
log ?D

(
)−1 (x; q) ;k

)
+ log|det�)−1 (x; q) |

]
+ 2>=BC. (4)

where ?∗G (x) denotes the target distribution and the model ?G (x; \) is parameterized by
\ = {q, k}, where, in particular, q are the parameters of ) and k are the parameters of ?D (u).

The practical challenges of constructing NFs are concerned with striking a balance between
the expressive power and the efficient computations of forward ()) and inverse ()−1) flows
and the associated Jacobian determinants, directly influencing the computational cost of the
sampling and density evaluation processes and therefore constituting the central theme of the
majority of work in this research field. In particular, the computation complexity of the Jacobian
determinant is normally O

(
�3) , which is prohibitive for most real-world applications where

data is high-dimensional. It is highly desirable to keep the computation complexity of Jacobian
determinants growing linearly with the input dimensionality with specifically tailored neural
architectures.
Autoregressive Flows The design principle of autoregressive flows is to ensure bijective
transformations have a triangular Jacobian, and consequently the log-determinant can be trivially
calculated by the sum of the diagonal elements on the log scale. Generally, the autoregressive
flows can be described as in Eq. (5), which follows the notational convention in [33, 34]:

I′8 = g (I8; h8) Fℎ4A4 h8 = 28 (z<8) (5)

where g is termed the (invertible) transformer and 28 denotes an autoregressive conditioner
which can be implemented as an arbitrary complex neural net as long as it takes as input with
subscripts less than 8 to ensure a triangular Jacobian, and thus the log-determinant can be readily
evaluated according to Eq. (6).
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log|det)q (z) | =
�∑
8=1

log| mg
mI8
(I8; h8) | (6)

Research efforts have been devoted to devise expressive transformers and conditioners while
keeping their computations efficient or at least tractable. A simple form of the transformer is
using the location-scale transformation as shown in Eq. (7), called affine autoregressive flows:

g (I8; h8) = f8 · I8 + `8 Fℎ4A4 h8 = {f8, `8} 0=3 f8 ≠ 0 (7)

The glaring weakness of affine autoregressive flows is the restricted expressiveness, which can
be compensated, however, by stacking multiple such base flows. Therefore, affine autoregressive
flows are popular in the literature, such as NICE [35], RealNVP [36], IAF [37], and MAF [38],
because of its simplicity and fast computation. Given the fact that the conic combination and
composition of monotonic functions remain monotonic, restricting Multi-Layer Perceptrons
(MLPs) to have strictly positive weights and monotonic activation functions therefore can
approximate arbitrarily well any monotonic function. Following this principle, Huang et
al. [34] put forward deep sigmoidal flows (DSF) and deep dense sigmoidal flows (DDSF) as
the instantiation of the transformer, and Ho et al. [39] similarly proposed to use the Cumulative
Distribution Function (CDF) of mixture of logistic distributions as the transformer. Monotonic
transformers are guaranteed theoretically to be universal density approximators, sharing the same
spirit of the inverse transform sampling. However, computation efficiency has been sacrificed
for the expressiveness. Specifically, the calculation of the log-determinant of the Jacobian needs
more careful treatment as a result of multiple hidden layers in MLPs and inverse functions cannot
be solved analytically, meaning that inversion need to be achieved using numerical methods
such as bisection search. To remedy the issues caused by no closed-form invertible functions,
spline-based transformers have been proposed, consisting of simple spline functions that can be
inverted analytically in each segment, such as quadratic splines [40], cubic splines [41], and
rational-quadratic splines [42].

Regarding the implementation of the conditioner, as mentioned previously, 28 (z<8) can be
implemented as an arbitrary complex neural network provided that the autoregressive structure is
respected. In practice, however, two issues need to be taken into account: 1) sharing parameters
between different subnetworks 28 (z<8) to save computational cost, and 2) fast computation of
forward and/or inverse flows. One common strategy is to use the masking mechanism, giving
rise to the so-called masked autoregressive flows. Generally, connections in neural networks
are removed to force the autoregressive constraints to be obeyed, i.e., there must be no path
from I8 to (h1, . . . , h8), usually by multiplying the weight matrix by a binarized mask matrix.
Germain et al. [43] proposed a general framework dubbed MADE originally for decomposing any
probability distribution into a set of conditionals by the product rule, where the autoregressive
constraints need to be satisfied for the decomposition to be valid. Roughly speaking, MADE
assigns each node in any hidden layer a degree which stipulates the maximum number of input
nodes to which it can be connected and each node is only allowed to connect to nodes with lower
or equal degrees. Masked or causal convolutions have also been widely used for constructing
autoregressive neural nets, such as PixelCNN [29] and WaveNet [30], where convolution filters
are masked to prevent from accessing future observations in a specified ordering. Masked
autoregressive flows are efficient for forward computations. Specifically, z′ can be calculated
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in parallel via I′
8
= g (I8; h8) as the conditioning features (h1, . . . , h�) can be obtained in a

single forward propagation. However, the inverse procedure is inherently sequential because h8
needed for computing I8 = g−1 (

I′
8
; h8

)
cannot be obtained until all (I1, . . . , I8) become available,

which means that the inversion cannot be parallelized and is � times more computationally
expensive than its forward pass. Consequently, masked autoregressive flows and the dual inverse
autoregressive flows [37] are limited to applications where either forward or inverse evaluations
are needed.

In order to overcome difficulties caused by the imbalanced computational cost, Song et al. [44]
proposed a numerical inversion method in contrast to the previously mentioned analytic inversion
methods. To be more specific, Song et al. [44] proposed a fixed-point iterative algorithm for
computing inverse values approximately as shown in Eq. (8).

6 (z;U, z′) = z − Udiag
(
�)q (z)

)−1 (
)q (z) − z′

)
z:+1 = 6 (z: ;U, z′) (8)

where 0 < U < 2 to ensure the spectral radius of the Jacobian of 6 (z;U, z′) is strictly less than 1
and therefore 6 (z;U, z′) is a contraction mapping. Therefore, as long as the number of iterations
required for the local convergence is less than the dimensionality �, this fixed-point iterative
algorithm can be much more efficient than computing the inverse of masked autoregressive flows
exactly. Besides, coupling layers [35, 36] are another kind of popular implementations of the
conditioner that can be equally fast for either sampling or density evaluation. Generally, the
implementation of coupling layers divides z into two parts z = (z≤3 , z>3) such that the first part
z≤3 is kept identical and only the second part is transformed conditioned upon the first part, as
shown in Eq. (9):

z′≤3 = z≤3
(h3+1, . . . , h�) = NN (z≤3)

z′8 = g (z8; h8) Fℎ4A4 8 > 3 (9)

where 3 is a partition index commonly set equal to b�2 c, and the inverse transformation can be
readily computed as in Eq. (10):

z≤3 = z′≤3
(h3+1, . . . , h�) = NN (z≤3)

z8 = g−1 (
z′8; h8

)
Fℎ4A4 8 > 3 (10)

It is easy to see that both forward and inverse computations of coupling layers can be parallelized
but at the price of reduced expressive power. When stacking multiple coupling layers, it is
preferable to permute each element in z accordingly such that every split of z can be transformed
alternately. As the permutation is an invertible operator with absolute Jacobian determinant
equal to 1, it can be seamlessly integrated with other invertible and differentiable transformations
in constructing deep flows.
Linear Flows Linear flows can be considered a generalization of the permutation operation and
defined as in Eq. (11)
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z′ = Wz (11)

where W is a � × � invertible matrix and the Jacobian determinant is simply detW. A naïve
implementation of linear flows is not practical considering thatW is not guaranteed to be invertible
when getting updated and computing the inverse matrix and Jacobian determinant would have
O

(
�3) computational complexity. The primary solution is to use matrix decomposition to

factorize W into products of special matrices with easier control over invertibility and lower
computational cost when computing the inverse and Jacobian determinant. Kingma et al. [45]
proposed to use LU decomposition to parameterize W in their work Glow as shown in Eq (12):

W = PL (U + diag (s)) (12)

where P is a permutation matrix, L is a lower triangular matrix with ones on the diagonal, and
U is an upper triangular matrix whose diagonal elements are zero. The invertibility can be
guaranteed by setting elements in the vector s to be nonzero, and the log-determinant of Jacobian
can be readily computed as log|detW| = ∑|B8 | in O (�).

Constraining W to be orthogonal Q is another kind of strategy to resolve those challenges
mentioned above, yielding orthogonal flows, given that the absolute determinant of any orthogonal
matrix is one andQ−1 = Q>. But the parameterization of orthogonal matrix poses new challenges.
Tomczak et al. [46] proposed to use Householder transformations to parameterize orthogonal
matrices as shown in Eq. (13):

Q 3
=

 ∏
:=1

H:

H: = I − 2
v>
:
v:

‖v: ‖2
(13)

Each Householder transformation can be computed in time O (�) and thus the total complexity is
O ( �). Golinski et al. [47] proposed to use the exponential map and the Cayley transformation
to construct orthogonal matrices as shown in Eq. (14) and (15), respectively:

Q 3
= exp (A) =

∞∑
8=0

A:

:!
(14)

Q 3
= (I − A) (I + A)−1 (15)

where A is skew-symmetric, i.e., A> = −A. The computational complexity of either the
exponential map or the Cayley map is O

(
�3) , which means such methods scale poorly with the

dimensionality.
Residual Flows Residual flows can be thought of as an extension of the concept of residual
learning proposed by He et al. [48] to NFs, which can be formulated as in Eq. (16):

z′ = z + 6q (z) (16)
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where 6q (z) needs to be carefully constructed to make the whole residual transformations to be
invertible. Generally, there exist two different lines of research to tackle this challenge: 1) the
matrix determinant lemma-based methods, and 2) the contractive mapping-based methods. The
matrix determinant lemma is shown in Eq. (17):

det
(
A + VW>

)
= det

(
I +W>A−1V

)
det (A) (17)

where A is an invertible matrix of size � ×�, and V, M are matrices of size � ×" . The matrix
determinant lemma provides a feasible or even computationally efficient manner to compute the
Jacobian determinant of the residual transformation provided that the determinant and inverse
of A is tractable and usually " is supposed to be less than �. Rezende et al. [49] proposed
two simple implementations built upon the matrix determinant lemma: planar and radial flows.
Planar flows can be described as in Eq. (18):

z′ = z + vf
(
w>z + 1

)
(18)

where v ∈ R� , w ∈ R� , 1 ∈ R, and f denotes a differentiable activation function. The
corresponding Jacobian determinant is shown in Eq. (19):

det�)q (z) = 1 + f′
(
w>z + 1

)
w>v (19)

which is the result of direct application of the matrix determinant lemma and has computational
complexity of O (�). Also, parameter values of w and v need to restricted such that w>v >
−1/supG f′ (G) to ensure invertibility. Planar flows can be considered as a single hidden layer
MLP with a single hidden node, and therefore the expressive power is rather limited. Similarly,
radial flows can be constructed in accordance with the Eq. (20):

z′ = z + V

U + A (z) (z − z0) Fℎ4A4 A (z) = ‖z − z0‖ (20)

where U ∈ (0,∞), V ∈ R, and ‖·‖ denotes the Euclidean norm. Invertibility is guaranteed by
setting V > −U. The Jacobian determinant can be computed as follows in Eq. (21):

det�)q (z) =
(
1 + UV

(U + A (z))2

) (
1 + V

U + A (z)

)�−1
(21)

which also is efficient to compute in time O (�) but with restricted expressiveness. Van den
Berg et al. [50] extended planar flows to a single layer MLP with " hidden units, known as
Sylvester flows, which can be expressed as in Eq. (22):

z′ = z + Vf
(
W>z + b

)
(22)

where V ∈ R�×" , W ∈ R�×" , b ∈ R" , and the differentiable activation function f is applied in
an element-wise fashion. The corresponding Jacobian determinant is calculated as in Eq. (23):
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det�)q (z) = det
(
I + S (z)W>V

)
(23)

where S (z) is an " × " diagonal matrix with diagonal elements equal to f′ (W>z + b). To
ensure the transformation defined in Eq. (22) to be invertible, Van den Berg et al. [50] proposed to
parameterize V = QU and W = QL, where Q = [q1, . . . , q"] consists of a set of orthornormal
vectors q8 ∈ R� , and U, L are respective upper and lower triangular matrices of size " × "
with diagonal entries satisfying the requirement U88L88 > −1/‖f′‖∞. By following the above
parameterization, Eq. (22) and (23) are converted to the following two equations (24) and (25),
respectively,

z′ = z +QUf
(
L>Q>z + b

)
(24)

det�)q (z) = det
(
I + S (z) L>U

)
=

�∏
8=1
(1 + S (z)88 L88U88) (25)

In addition to being invertible, the computational complexity of the Jacobian determinant is
further reduced to O (�). However, there is no analytic form for the inverse of planar, radial
or Sylvester flows, which makes them not suitable for direct density estimation as shown in
Eq. (4) and is also the reason why these techniques have been proposed to increase posterior
expressiveness in variational inference.

The second kind of approaches attempts to parameterize neural nets such that 6q (z) in Eq.
(16) is a contraction mapping and so is true for z′ − 6q (z). As stated by the Banach fixed-point
theorem, there is a unique fixed-point such that z∗ = z′ − 6q (z∗) and the inverse can be found
using the fixed-point iteration as shown in Eq. (26):

z:+1 = z′ − 6q (z: ) (26)

Building contraction maps or equivalently ensuring the Lipschitz constant of neural network
layers to be less than one is highly challenging. Behrmann et al. [51] proposed to use spectral
normalization [52] to regularize weight matrices of linear or convolutional layers given that
the Lipschitz constant of any linear function is its spectral norm. Besides, the evaluation of
the Jacobian determinant has a time cost of O

(
�3) , which is impractical when scaling to

high-dimensional data, and instead needs to be evaluated by stochastic estimators [51].
Other Practical Considerations Flow-based neural nets are generally composed of stacking
multiple transformation functions introduced above which can meet the essential requirements:
invertibility, differentiability and tractable or efficient computation of Jacobian determinants. In
this report, such transformation functions are referred to as atomic flow layers. Apart from these
atomic flow layers, however, constructing deep flows necessitates other auxiliary techniques to
ease optimization. Firstly, normalization techniques have been demonstrated to be critical to
training deep neural nets. However, the existing normalization layers may fail to meet those
essential requirements. In other words, normalization layers in flow-based models require
additional treatment that can make them to be effective atomic flow layers. Fortunately, batch
normalization [53] is directly applicable as it is a special case of the location-scale transformation
as shown in Eq. (27):
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BN (z) = " � z − -̂√
2̂2 + &

+ # (27)

where -̂ and 2̂2 are batch statistics and therefore can be treated as constants. The Jacobian
determinant is also readily to compute as shown in Eq. (28):

det��# (z) =
�∏
8=1

U8√
f̂8

2 + n8
(28)

As an immediate consequence of Eq. (3), interleaving batch normalization layers with any other
atomic flow layers ):+1 ◦ BN ◦ ): can be treated an invertible and differentiable transformation
as a whole, whose Jacobian determinant is tractable.

Given that input and output of atomic flow layers have the same dimensionality as a
consequence of invertibility, constructing deep flows would encounter computational bottleneck
with high-dimensional real-world data. Dinh et al. [36] proposed to remove a small subset of
dimensions of intermediate representations z: every certain number of steps of flows so that the
removed elements are excluded from the subsequent transformations, which can be regarded
as skip-connections that map those removed elements to the final representation directly and
therefore is termed multiscale architecture.

2.2.2 Variational AutoEncoders

Variational AutoEncoders (VAEs) provide a unified framework for approximate posterior
inference and log-density estimation which can be optimized through stochastic gradient descent
(SGD), giving rise to a scalable and computationally efficient method for joint inference and
learning of Deep Latent Variable Models (DLVMs). Generally, the objective function of VAEs
can be formulated as in Eq. (29):

log ?\ (x) = logE@q (z|x)
[
?\ (x, z)
@q (z|x)

]
≥ E@q (z|x)

[
log

?\ (x, z)
@q (z|x)

]
L\,q (x) = E@q (z|x)

[
log ?\ (x, z) − log @q (z|x)

]
= E@q (z|x) [log ?\ (x|z)] − �KL

(
@q (z|x) ‖?\ (z)

)
(29)

whereL\,q (x) is referred to as individual-datapoint evidence lower bound (ELBO),which consists
of the probabilistic encoder/recognition model @q (z|x), the probabilistic decoder/generative
model ?\ (x|z), and a regularization term, i.e., Kullback–Leibler (KL) divergence between the
approximate posterior and prior distributions.

Posterior inference and learning often are computationally prohibitive or intractable. However,
the intractability problem can be satisfactorily resolved in the VAE framework by employing
the reparameterization trick, i.e., reparameterizing latent variables z as a deterministic and
differentiable function of an externalized randomness source:
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& ∼ ? (&)
z = Encoderq (x, &)

L\,q (x) = E?(&)
[
log ?\ (x, z) − log @q (z|x)

]
≈ log ?\ (x, z) − log @q (z|x) = L̃\,q (x) (30)

The Eq. (30) implies that the reparameterization trick enables the gradients of the ELBO
∇L\,q (x) w.r.t both generative model and variational parameters \ and q to be calculated with
Monte Carlo estimator ∇L̃\,q (x), which is an unbiased estimator of the exact gradients of the
ELBO. SGD-based optimization of ELBO by using the reparameterization trick is referred to as
the Stochastic Gradient Variational Bayes (SGVB) estimator [54].

In contrast to traditional Variational Inference (VI) where each data point has a separate
variational distribution, the parameters of the recognition model in VAEs are shared among all
input variables, which is referred to as amortized VI. Also, there are no oversimplified assump-
tions on variational distributions parameterized by deep neural networks, e.g., independence
between latent variables assumed in mean-field VI, which results in more flexible and increased
expressiveness of the approximate posterior. The most significant contribution of VAEs is the
reparameterization trick, which allows obtaining low-variance gradient estimators of ELBO and
therefore leads to efficient optimization using automatic differentiation in modern deep learning
libraries. All these advantages combined together leads to a recent upsurge of interest in VAEs,
which marries Bayesian Networks and Deep Learning. VAEs since its inception have also been
successfully applied to a wide variety of areas from generative modelling, semi-supervised
learning to unsupervised representation learning.
Multi-Sample Stochastic Lower Bounds & Stochastic Gradient Estimators Reinterpreting
VAEs from the lens of importance sampling, i.e., the approximate posterior can be considered the
proposal distribution in importance sampling, leads to the extension of the vanilla VAE objective
(single-sample) to multi-sample Monte Carlo Objective (MCO). Burda et al. [55] introduced
IWAE lower bound as shown in Eq. (31), which has proven to be a tightened variational lower
bound as the number of samples increases, which, however, comes at the cost of rendering naive
gradient estimators (Eq. (32)) troublesome. More specifically, increasing the number of samples
would impede the learning procedure and thus deteriorate model performance due to the high
variance of naive gradient estimators w.r.t. variational parameters in particular, which has been
shown theoretically and empirically in [56, 57].

L (x) = Ez1,··· ,zK∼@q (z|x)

[
log

1
 

 ∑
8=1

?\ (x, z8)
@q (z8 |x)

]
≤ log ?\ (x) (31)

F8 =
?\ (x, z8)
@q (z8 |x)

F̃8 =
F8∑ 
8=1 F8

∇\,qL (x) = En1: 

[
 ∑
8=1

F̃8 logF8

]
(32)
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Therefore, various variance reduction techniques have been proposed to obtain more informative
gradient estimators with lower variance for the multi-sample MCO. The mainstream solutions
[58–61] leverage control variates from literature of importance sampling to reduce variance,
which can be roughly considered as subtracting zero expectation quantities, called baselines, that
are positively correlated with the magnitude of the learning signal and perhaps dependent on input
data. VIMCO [59] is a general framework for unbiased gradient estimations of multi-sample
MCO, which realizes effective variance reduction through evaluating the magnitude of the
learning signal using the other  − 1 samples in a minibatch, therefore obviating the need
to learn additional parameters to compute baselines such as done in NVIL [58]. Roeder et
al. [60] identified the source of high variance arising from the lurking score function term
∇q log @q (z|x) by inspecting the total derivative of ELBO and therefore proposed to remove it
from gradient computations, i.e., forcing the updates of variational parameters q only rely on
latent variables z, which is referred to as STL estimator. However, completely removing the
score function term from gradient estimations makes the STL estimator biased. Consequently,
Tucker et al. [61] proposed to apply twice the reparameterization trick to construct an unbiased
estimator called DReG, leading to the automatic cancellation of the score function term, which is
broadly applicable to a range of gradient estimators, such as IWAE, RWS [62], and JVI [63]. It
is worth mentioning that RWS was proposed to train Helmholtz machines [64] and Deep Belief
Networks (DBNs) [65] which are deep directed graphical models and bear a close resemblance
to VAEs. RWS features a decoupled training procedure of alternating updates of parameters
between the generative and the recognition model, and thus does not optimize a unified objective
such as ELBO. Despite this deficiency, it has been considered as an attractive alternative in
practice [57].
Discrete Latent Variables Due to the jumping discontinuities of discrete latent variables,
incorporating stochastic layers composed of discrete random variables into VAEs brings
additional challenges for constructing appropriate gradient estimators. For the gradient estimators
mentioned previously, apart from those solely relying on score function estimators, such as
VIMCO and RWS, which would suffer from the high variance issues, other gradient estimators,
such as STL and DReG, are not directly applicable to discrete distributions, thereby requiring
reparameterizable continuous relaxations. Although as far as mixture distributions are concerned,
marginalizing over discrete/membership variables [8, 60] can be regarded as an alternative to
sidestep directly dealing with discrete latent variables, it would be computationally demanding
when the dimensions of discrete variables increase significantly. Jang et al. [66] and Maddison
et al. [67] independently discovered reparameterization methods that can approximate discrete
distributions in the limiting case, which are referred to as Gumbel-Softmax and Concrete
distributions, respectively, as shown in Eq. (33):

-: =
exp ((logU: + �: ) /_)∑=
8=1 exp ((logU8 + �8) /_)

(33)

?U,_ (G) = (= − 1)!_=−1
=∏
:=1

U:G
−_−1
:∑=

8=1 U8G
−_
8

(34)

where - ∈ Δ=−1 =
{
G ∈ R= | G: ∈ [0, 1] ,

∑=
8=1 G8 = 1

}
is a probability simplex, the temperature

parameter _ ∈ (0,∞), (unnormalized)parameters of the categorical distribution U: ∈ (0,∞),
and i.i.d. gumbel noise �: ∼ Gumbel (0, 1). The corresponding probability distribution
implied by Eq. (33) is shown in Eq. (34). The property of Concrete random variables
P (lim_→0 -: = 1) = U:∑ 

8=1 U8
guarantees that when the temperature _ approaches 0, the samples
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of the Concrete distribution can well-approximate those drawn from arg max (logU: + �: ) ∼
Cat

(
0 | c8 = U8∑ 

8=1 U8

)
, which is the well-known Gumbel-Max trick [68]. As pointed out by

Potapczynski et al. [69], the necessary conditions for constructing reparameterizable continuous
relaxations of discrete distributions are a reparameterizable continuous distribution defined on
the probability simplex, i.e., defined as transforming parameter-independent random noise, and
concentrating the probability mass on the vertices of the simplex when the temperature parameter
approaches 0. Consequently, Potapczynski et al. [69] proposed to transformGaussian noise onto a
simplex by invertible transformations, referred to as Invertible Gaussian Reparamterization (IGR),
which should satisfy two requirements: 1) efficient computation of the Jacobian determinant,
and 2) placing the probability mass around vertices as the temperature _ reaches 0. IGR is
more flexible than Gumbel-Softmax or Concrete Random Variables but at the cost of losing
interpretability of parameters.
Posterior Collapse Almost without exception DLVMs are notorious for the optimization issues.
In particular, the objective of VAEs tends to get stuck in the local optimum where approximate
posteriors are driven towards to match the uninformative priors and consequently the latent
variables remain inactive during the training procedure, which is referred to as posterior collapse
or the KL vanishing problem. The problem would be exacerbated when the recognition model is
coupled with a powerful decoder, such as autogressive models, causing difficulties especially for
applying VAEs for sequential data. Numerous approaches have been proposed to mitigate the
posterior collapse problem. Bowman et al. [70] proposed to gradually increase the weight of the
KL term such that in the initial stage of training the recognition model is not adversely affected
by the prior distribution. The monotonically increasing scheduling scheme of the KL cost has
been further extended to a cyclical annealing schedule by Fu et al. [71] where the provided
theoretical analysis has suggested that increasing the weight of the KL cost would reduce mutual
information between observations and latent codes and therefore repeatedly setting the weight to
zero is beneficial for meaningful latent representation learning. Kingma et al. [37] proposed a
slightly modified VAE objective where the substituted KL term can enforce at least a minimum
amount of _ nats information to be encoded in a subset of latent dimensions, called Free Bits
objective. Another popular solution is to weaken the capacity of the decoder, e.g., limiting the
receptive field of conditional distributions used in autoregressive models [72]. In the same spirit,
Lucas et al. [73] proposed to augment the vanilla VAE objective with an auxiliary reconstruction
term which can guide the global structure information encoded in latent codes and the remaining
local variations captured by autoregressive models. Dieng et al. [74] proposed to augment the
decoder with skip connections between observations x and latent codes z which can promote
increased mutual information and therefore prevent the KL vanishing problem. He et al. [75]
has shown that a novel training procedure where the updates of the parameters of the recognition
model are more frequent than those of the generative model is beneficial for preventing posterior
collapse based on empirical observations that the approximate posterior usually lags far behind
the true posterior on synthetic datasets. Li et al. [76] has conducted extensive experiments
on the existing solutions aimed at tackling the posterior collapse problem and found that the
combination of pre-training inference network with the AutoEncoder objective and Free Bits
VAE objective can yield better results.
Expressive Posteriors & Flexible Priors Given that the ELBO can be rewritten as in Eq. (35),
the gap between the ELBO L\,q (x) and the marginal log-likelihood log ?\ (x) is reduced as
the approximate posterior @q (z|x) is closer to the true posterior ?\ (z|x) in terms of the KL
divergence.
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log ?\ (x) = E@q (z|x)
[
log

?\ (x, z)
@q (z|x)

]
︸                       ︷︷                       ︸

=L\,q (x)

+E@q (z|x)
[
log

@q (z|x)
?\ (z|x)

]
︸                       ︷︷                       ︸
=�KL(@q (z|x)‖?\ (z|x))

(35)

This motivates improving the expressive power of the approximate posterior, i.e., building more
complex variational families, in order to improve the model performance. One general method
is NFs as introduced previously, such as planar flows [49], radial flows [49], Sylvester flows [50],
Householder flows [46], and inverse autoregressive flows [37], which have been proposed in the
context of SVI for constructing flexible posteriors. The procedure can be roughly described as in
Eq. (36):

z0 ∼ @0 (z|x)
z = ) ◦ · · · ◦ )2 ◦ )1 (z0)
z ∼ @ (z|x) (36)

where @0 (z|x) is a simple base distribution, such as a spherical Gaussian, and)8 are invertible and
differentiable transformations with efficiently computable Jacobian determinants. Consequently,
the ELBO in Eq. (29) can be reformulated as in Eq. (37):

L\,q (x) = E@0 [log @0 (z|x) − log ?\ (x, z)] − E@0

[
 ∑
:=1

log|det
(
m): (z:−1; q: )

mz:−1

)
|
]

(37)

The other kind of approaches to increase the flexibility of approximate posteriors is to introduce
auxiliary latent variables. Given that such auxiliary latent variables are usually arranged in a
hierarchical structure, the detailed discussions are deferred to the next subsection.

Additionally, there has been a parallel line of research on increasing the flexibility of priors
as too simplistic priors may cause overregularization and consequently uninformative latent
representations. Tomczak et al. [77] proved that the optimal prior should match the aggregated
posterior, i.e., ?∗

_
(z) = 1

#

∑#
==1 @q (z|x=), which is consistent with similar findings in other

work [78, 79]. Built upon this observation, Tomczak et al. [77] proposed the variational mixture
of posteriors prior (VampPrior) as shown in Eq. (38) to approximate the aggregated posterior:

?_ (z) =
1
 

 ∑
:=1

@q (z|u: ) (38)

where u: , referred to as the pseudo input, is a vector of the same dimensionality as the input and
can be updated through backpropagation. Also, NFs can be employed to build flexible priors
in a similar manner to improve expressiveness of posteriors. Ding et al. [80] proposed to use
RealNVP [36] to augment the prior distributions and combine the vanilla VAE objective with
IWAE objective [56] to facilitate learning of prior-related parameters. In contrast to previous
methods, Van den Oord et al. [81] proposed Vector Quantized VAE (VQ-VAE) where a codebook
is used to represent a discretized prior distribution and can be learned in a way similar to K-means.
To overcome one of the drawbacks of VQ-VAE that the quantization process is deterministic,
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Sønderby et al. [82] further extended VQ-VAE to its probabilistic version by using VIMCO [59]
and Gumbel-Softmax [66, 67] gradient estimators and demonstrated that VIMCO struggles with
high dimensions of the discrete latent space.
Multiple Stochastic Latent Layers & Hierarchical VAEs All the previous discussions con-
cerning VAEs have so far been restricted to a single layer of stochastic variables. Incorporating
multiple stochastic latent layers into the VAE framework, i.e., building deep hierarchical VAE
models, is notoriously challenging mainly as a result of optimization issues, and consequently
the posterior collapse problem mentioned above would be exacerbated, i.e., posteriors of the
vast majority of latent variables would collapse to a trivial prior, which can be seen from the
following VAE objective for multiple stochastic latent layers (39):

L\,q (x) = E@q (z|x)
[
log

?\ (x, z<! |z!)
@q (z<! |x)

]
− E@q (z<! |x)

[
�KL

(
@q (z! |z<!) ‖?\ (z!)

) ]
(39)

when ?\ (x, z<!) is powerful enough, latent variables at the top layer tend to be ignored. The
optimization issues have restricted the study of VAEs to shallow models discussed previously.
Sønderby et al. [83] are among the first to explore bidirectional inference in building deep
VAEs, resulting in Ladder VAE (LVAE). Specifically, approximate posteriors are derived as
a combination of information from both the bottom-up inference and top-down generative
processes, which can also be regarded as iteratively correcting posterior distributions with
information carried from priors as the top-down path used for approximate posterior inference
shares parameters with the generative model. Maaløe et al. [84] proposed Bidirectional-
Inference Variational Autoencoder (BIVA), which can be considered a generalization of LVAE
by introducing skip-connections into generative models and splitting latent variables at each
level of the hierarchy into two groups such that one of which can be used to construct stochastic
bottom-up inference path. Vahdat et al. [85] proposed to build deep hierarchical VAE models
from the perspective of architectural design and use residual parameterization of posteriors and
spectral normalization [52] to ease optimization. Razavi et al. [86] extended VQ-VAE to its
deep hierarchical variant by simply maintaining different codebooks for different levels in the
hierarchy such that low-level codebooks are conditioned on higher-level codebooks. Williams et
al. [87] proposed Hierarchical Quantized Autoencoders (HQA) where the probabilistic VQ-VAE,
referred to as stochastic quantization in this work [87], is combined with a hierarchical latent
structure and they further illustrated layer-wise quantization can resolve mode-covering behaviour
in the data space, therefore facilitating generating realistic samples.

2.2.3 Dynamical Variational Auto-Encoders

VAEs that have been discussed so far do not take temporal correlations in data into consideration,
i.e., sequence vectors are treated independently with each other, which would undermine the
modelling power when applied to process sequential data. Naturally, the extension of static VAEs
to use latent dynamics to capture temporal dependencies in the observed data by integrating
Recurrent Neural Networks (RNNs) or State Space Models (SSMs) into the VAE framework
yields a class of powerful probabilistic sequential latent variable models, which is referred
to as Dynamical Variational Auto-Encoders (DVAEs) [88]. RNNs and SSMs are powerful
deterministic and stochastic sequential models, respectively, which lends themselves to be the
natural choices for latent temporal modelling in DVAEs. Generally, DVAEs are temporally
replicated VAEs at different time indices, also termed per timestep VAEs. The temporal structure
in the generative model of DVAEs can be characterized by the following Eq. (40):
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?\ (x1:) , z1:) |u1:) ) =
)∏
C=1

?\ (xC , zC |x1:C−1, z1:C−1, u1:C)

=

)∏
C=1

?\ (xC |x1:C−1, z1:C , u1:C) ?\ (zC |x1:C−1, z1:C−1, u1:C) (40)

where x1:) are observed data sequences, z1:) are latent random vectors/state sequences, and
u1:) are control input sequences, which is the terminology inherited from SSMs. The causal
dependence along the temporal dimension is clearly reflected in the factorization. It should be
noted that the Eq. (40) gives the general form of generative distributions, which can be further
simplified by additionally making conditional independence assumptions. The general form of
the inference network is given in Eq. (41):

@q (z1:) |x1:) , u1:) ) =
)∏
C=1

@q (zC |z1:C−1, x1:) , u1:) ) (41)

It can be seen from the Eq. (41) that the inference process is generally non-causal, i.e., it depends
on past, present and future observations and control signals, which corresponds to the concept of
smoothing in control theory. The sophisticated temporal dependencies between latent variables
distributed along the temporal axis would complicate the inference process and therefore usually
need to be simplified by exploiting the conditional independence, i.e., the D-separatedness [89],
in graphical models. The ELBO for VAEs can be naturally extended to DVAEs as shown in Eq.
(42), which is firstly presented in the work [88]:

L\,q (x1:) , u1:) ) = E@q (z1:) |x1:) ,u1:) )
[
log ?\ (x1:) , z1:) |u1:) ) − log @q (z1:) |x1:) , u1:) )

]
=

)∑
C=1
E@q (z1:C |x1:) ,u1:) ) [log ?\ (xC |x1:C−1, z1:C , u1:C)]

−
)∑
C=1
E@q (z1:C−1 |x1:) ,u1:) )

[
�KL

(
@q (zC |z1:C−1, x1:) , u1:) ) ‖

?\ (zC |x1:C−1, z1:C−1, u1:C))] (42)

As the reparameterization trick remains valid for Eq. (42), the intractable expectations can be
approximated by Monte Carlo estimates where samples from @q (z1:C |x1:) , u1:) ) are obtained
recursively by the ancestral sampling.

The general framework introduced above for DVAEs greatly facilitates the analysis and
comparison of the existing approaches on combining RNNs or SSMs with VAEs. Deep Kalman
Filters (DKF) [90] and Deep Markov Models (DMM) [91] proposed by Krishnan et al. can be
viewed as imposing a first-order Markovian structure on latent variables in VAEs and therefore
is a generalization of linear dynamical systems, where the generative and inference models can
be further simplified by the Markov assumption, yielding the following two Eq. (43) and (44):
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?\ (x1:) , z1:) |u1:) ) =
)∏
C=1

?\ (xC |zC) ?\ (zC |zC−1, uC) (43)

@q (z1:) |x1:) , u1:) ) =
)∏
C=1

@q (zC |zC−1, xC:) , uC:) ) (44)

Fraccaro et al. [92] proposed a unified framework, called Kalman Variational Autoencoder
(KVAE), for joint optimization of VAEs and Linear Gaussian SSMs (LGSSMs) by firstly
mapping high-dimensional observations to a low-dimensional manifold using a shared VAE
across timesteps and then learning temporal dynamics in the lower-dimensional space by
LGSSMs with analytical solutions provided by classic Kalman Filters.

In addition to the efforts of integrating SSMs with VAEs, extending RNNs to sequential
latent variable models has been popular in the literature. STOchastic Recurrent Network
(STORN) proposed by Bayer et al. [93] is among the first attempts to introduce stochasticity
into deterministic RNNs by allowing the recursive updates of hidden representations hC in
RNNs to take as additional input random variables zC which are independent between different
time indices, i.e., hC = 5ℎ (x1:C−1, z1:C). Although hC has been turned into random variables, the
entanglement of hC and zC has established a fully connected graphical model, which complicates
the inference process, and the reduction made in the work [93] @q (zC |z1:C−1, x1:) ) = @q (zC |x1:C)
is not well-justified, hence leading to inferior performance. The Variational Recurrent Neural
Network (VRNN) proposed by Chung et al. [94] model temporal dependencies both in observed
data and latent states with a single RNN, i.e., the per timestep generative and inference process
in VAEs are tied through a shared RNN. Unlike the i.i.d. assumption made in STORN
?\ (z1:) ) =

∏)
C=1 ?\ (zC) [93], VRNN introduces the temporal structure into latent random

variables, i.e., ?\ (z1:) ) =
∏)
C=1 ?\ (zC |hC = 5ℎ (x1:C−1, z1:C−1)), resulting in increased flexibility

in priors. The drawback of VRNN is similar to that of STORN, posterior inference is simplified
without respecting the dependencies of random variables in the true posterior, i.e., artificially
imposing conditional independence, due to the shared RNN. The Stochastic Recurrent Neural
Network (SRNN) proposed by Fraccaro et al. [95] is distinct from STORN and VRNN in a clear
separation of deterministic and stochastic layers by stacking a layer of SSM on top of a layer of
RNN. Despite the first-order Markovian structure assumed in the SSM, the state transitions of
SSM are nonlinear and conditioned upon hidden representations of a RNN, which makes the
SSM layer can capture more complex temporal dynamics. More importantly, as pointed out by
Girin et al. [88], SRNN is one of the earliest work where the approximate posterior inference
fully respects the dependencies in the true posterior, i.e., @q (z1:) |x1:) ) =

∏)
C=1 @q (zC |zC−1, xC:) ),

where the future observations xC:) are summarized through a backward RNN. The recurrent VAE
(RVAE) was proposed by Leglaive et al. [96] for speech and audio spectrogram modelling. By
omitting the application-specific details of RVAE, it can be considered as an effective remedy
for STORN in the sense that the approximate posterior inference is consistent with dependence
relations in the true posterior, i.e., @q (z1:) |x1:) ) =

∏)
C=1 @q (zC |z1:C−1, xC:) ), where the past latent

states z1:C−1 and the future observations xC:) are summarized by a forward and backward RNN,
respectively. The Disentagled Sequential Autoencoder (DSAE) proposed by Li et al. [97]
explicitly introduces a sequence-level latent state v which would guide the learning of temporal
dynamics through time-dependent latent variables zC , therefore realizing a decomposition of
contents and dynamics. The generative and inference model of DSAE can be described as in Eq.
(45) and (46), respectively:
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?\ (x1:) , z1:) , v) = ?\ (v)
)∏
C=1

?\ (xC |zC , v) ?\ (zC |z1:C−1) (45)

@q (z1:) , v|x1:) ) = @q (v|x1:) )
)∏
C=1

@q (zC |z1:C−1, v, xC:) ) (46)

It can be seen from the Eq. (45) that DSAE is a generalization of DKF in the sense that
dependencies in latent variables zC are no longer restricted to the first-orderMarkovian assumption.
But it should be pointed out that the inference process proposed by Li et al. [97] does not follow
the Eq. (46) which is the corrected form by Girin et al. [88].
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3 Benchmark Datasets

Table 1: An overview of publicly available benchmark datasets for crop type mapping. “TS” and
“ST” in the column “Format” stand for Time Series and Spatio-Temporal, respectively. “S1”,
“S2”, “PF”, “M”, and “T” in the column “Modality” denote Sentinel-1, Sentinel-2, Planet Fusion,
Meteorological Data, and Topographic Data, respectively.

Source Area of Focus Format Modality # Fields
Temporal Temporal
Density Shift

BREIZHCROPS [98] France TS S2 6.1 × 105 ≥ 5 days X

TimeSen2Crop [99] Austria TS S2 1.1 × 106 ≥ 5 days X

DENETHOR [1] Germany ST S1+S2+PF 4.5 × 103 Daily X

EUROCROPS [100]
EU Member

TS S2 8 × 105 ≥ 5 days X
States

CropHarvest [101] Global TS S1+S2+M+T 9 × 104 Monthly X

The exploitation of raw satellite data for Machine Learning (ML) researchers and practitioners
who lack a strong background in Earth Observation (EO) and Remote Sensing (RS) has been
impeded by the high barriers to entry, such as specialized geospatial analysis software (e.g.,
Google Earth Engine(GEE)), data pre-processing techniques (e.g., cloud removal, atmospheric
correction, and radiometric calibration), and peculiarities of satellite data (e.g., multi-spectral
bands in Sentinel-2 and polarizations in Synthetic Aperture Radar (SAR) data). Recently, there
have been great efforts in RS community devoted to providing ML analysis-ready benchmark
datasets to lower the barriers to entry and therefore foster collaborations between RS and ML
researchers and practitioners.

Specifically, the existing publicly available and ML analysis-ready benchmark datasets
for crop type mapping are summarized in Tab. 1, which fall into two general categories: 1)
time-series, and 2) spatio-temporal data format. The former one is obtained by mean-aggregating
reflectance values in each band and parcel field where geometry information or boundaries
of crop parcels are usually accessible based on the premise that temporal evolution of crop
phenology is critical and sufficient for distinguishing different crop types. But Kondmann et
al. [1] argued that the discarded spatial information may be beneficial for improving classification
performance and therefore presented the first benchmark dataset called DENETHOR, which
includes Planet Fusion, Sentinel-1, and Sentinel-2 satellite data with daily temporal frequency
and high-quality field geometry information at 3m spatial resolution. The extremely high
resolution in both temporal and spatial dimensions significantly restricts the geographical size
that can be covered due to computational concerns. Consequently, the number of labelled parcel
fields in other datasets listed in Tab. 1 is at least one order of magnitude larger than that of
DENETHOR. Except for the DENETHOR, other recently released datasets all adopted the
time-series format but with respective characteristic features. BREIZHCROPS [98] presented
Sentinel-2 top-of-atmosphere (Level 1C) as well as bottom-of-atmosphere (Level 2A) time series,
where the latter is atmospherically corrected. TimeSen2Crop [99] employed LSTM to improve
the reliability of labelled units by only keeping those with high predicted confidence given that
the ground-truth labels are obtained through farmers’ self-declarations. EUROCROPS [100]
collected agricultural parcel information from 13 of all 27 European Union (EU) member states,
aiming at achieving the maximal regional coverage in EU, and introduced a novel taxonomy
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scheme called HCAT-ID. But, at the current stage, they only released a demo dataset for a first
study, which only includes crop data from Austria, Slovenia, and Denmark. CropHarvest [101]
is a benchmark dataset that covers geographically diverse regions across the globe by assembling
20 datasets, part of which has already been made publicly available before such as DENETHOR
and the remaining part is collected from NASA Harvest. In addition to Sentinel-1 and Sentinel-2
data, meteorological and topographic data have also been provided. In conjunction with the crop
benchmark dataset, an ML friendly API and the code used to acquire the satellite data from GEE
have also been open-sourced. Last but not least, all datasets listed in Tab. 1 have considered
the temporal shift effect, i.e., the out-of-year generalization, because crop type maps need to
be updated regularly due to crop rotation practices. But the performance drop of existing crop
classification systems as a result of testing on data collected in years different from the one used
for training can be substantial, e.g., approximately 12 percentage points drop in accuracy has
been reported in DENETHOR [1].
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4 Work to Date
Annual work progress is summarized as follows:

• Conducted a literature review on crop type classification, SITS analysis, deep generative
models, deep semi-/un- supervised learning, and deep neural architecture designs;

• Acquired an intermediate level of knowledge and skill in performing parallel training of
deep neural nets on SLURM-based High Performance Computing (HPC) facilities;

• Built a pipeline to process raw SITS for crop type classification;

• Participated in AI4Food Security Challenge and submitted final solutions;

• Submitted a manuscript entitled “Revisiting VAE Objective for Improving Satellite Image
Time Series Classification3” to ECML PKDD 2022.

3This is the link to the preprint on Arxiv.
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5 Plan of Future Research Activities

Figure 2: Gantt chart of planned activities for the remaining period of study.
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6 Thesis Outline
NFs and VAEs are two popular generative modelling frameworks, which have experienced
rapid progress in recent years with increasingly powerful capabilities to capture highly complex
probability distributions of real-world data, as seen in Sec. 2.2. DVAEs as the extension of
VAEs to sequential latent variable modelling have also been demonstrated effective for capturing
complex temporal dynamics in sequential data, such as audio and video signals. However, these
three kinds of generative modelling frameworks have not been explored so far for crop type
classification. Therefore, the primary focus of my PhD research is to showcase the potential of
applying deep generative models to improve classification accuracy and data efficiency for crop
type classification with SITS data, which will form the three main chapters of my PhD thesis.
The general structure of my PhD thesis is outlined as follows.
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