Satellite-Driven Crop Type Classification with Deep Generative Models

Confirmation Assessment Presentation

Xin Cai

Supervisors: Dr. Yaxin Bi, Dr. Peter Nicholl, and Mr. Roy Sterritt

27 June 2022

Research Aims & Objectives

- **Research Problem:** Variability induced by geographical and temporal changes impedes the generalizability of the existing deep crop type classification models.
- **Hypothesis:** Non-probabilistic deep models cannot identify the underlying generative process that should be sufficiently flexible to account for the variability in observed data.

Research Aims & Objectives

- **Research Gap:** There is almost no work on probabilistic deep models for SITS-based crop type classification.
- **Contributions of My PhD Research:** Developing crop type classification algorithms that are more generalizable in terms of geographical and temporal variations and more data efficient with latest developments in deep generative models.

Literature Review: SITS-based Crop Analytics

Conventional Machine Learning Algorithms: Support Vector Machines (SVMs), Random Forests (RFs), Probabilistic Graphical Models (PGMs);

Deep Learning Models: Recurrent Neural Networks (RNNs), Temporal Convolution Neural Networks, Transformers, and the hybrid models.

Literature Review: Deep Generative Models

Figure 1: The taxonomy of deep generative models.

Literature Review: Deep Generative Models

Normalizing Flows (NFs)

Literature Review: Deep Generative Models

 Variational AutoEncoders (VAEs)

Literature Review: Deep Generative Models

 Dynamical Variational AutoEncoders (DVAEs)

A Preprint Paper on VAEs

- Applying VAEs with discrete latent variables to improve accuracy for crop type classification and extend the model to perform semisupervised learning.
- Making technical improvements in mitigating posterior collapse problem.

Table 5: Comparison of our proposed and state-of-the-art models on DENETHOR test dataset.

Fig. 1: Classification performance of VAE-PTST on South Africa and Germany test datasets with partially labelled data. N.B., figures are based on predictions of the recognition component. Please refer to Tab. 3 and 4 in the Supplementary Material for detailed results. Table 1: An overview of publicly available benchmark datasets for crop type mapping. "TS" and "ST" in the column "Format" stand for *Time Series* and *Spatio-Temporal*, respectively. "S1", "S2", "PF", "M", and "T" in the column "Modality" denote *Sentinel-1*, *Sentinel-2*, *Planet Fusion*, *Meteorological Data*, *and Topographic Data*, respectively.

Source	Area of Focus	Format	Modality	# Fields	Temporal Density	Temporal Shift
BREIZHCROPS [98]	France	TS	S2	6.1×10^{5}	\geq 5 days	\checkmark
TimeSen2Crop [99]	Austria	TS	S2	1.1×10^6	\geq 5 days	\checkmark
DENETHOR [1]	Germany	ST	S1+S2+PF	4.5×10^{3}	Daily	\checkmark
EUROCROPS [100]	EU Member States	TS	S2	8×10^{5}	\geq 5 days	\checkmark
CropHarvest [101]	Global	TS	S1+S2+M+T	9×10^4	Monthly	\checkmark

Benchmark Datasets

Work to Date

- Conducted a literature review on crop type classification, SITS analysis, deep generative models, deep semi-/un-supervised learning, and deep neural architecture designs;
- Acquired an intermediate level of knowledge and skill in performing parallel training of deep neural nets on SLURM-based High-Performance Computing (HPC) facilities;
- Built a pipeline to process raw SITS for crop type classification;
- Participated in AI4Food Security Challenge and submitted final solutions;
- Had a preprint entitled "Tampered VAE for Improved Satellite Image Time Series Classification" on arXiv.

Future Research Activities

PLAN OF ACTIVITY

Jun-22

Mar-23

Jun-23

Dec-22

Literature Review **Necessary Training on Mathematical Analysis Necessary Training on Numerical Analysis** Necessary Training on Modern Probability Theory Preparing a Paper on Variational AutoEncoders **Preparing a Paper on Normalizing Flows** Preparing a Paper on Dynamical Variational AutoEncoders Completing the Literature Review/Background Part of the Thesis Completing the Methodological Part of the Thesis (3 Chapters) Final Assessment Completing the Remaining Part of the Thesis **Preparing Thesis Defence**

Sep-23

Nov-23

Feb-24

May-24

Nov-24

Timeline of Completing PhD Thesis

May-23 Jul-23 Sep-23 Completing the Introduction Chapter Image: 20 minipage Image: 20 minipage Completing the Literature Review/Related Work Chapter Image: 20 minipage Image: 20 minipage Completing the Technical Chapter on Normalizing Flows Image: 20 minipage Image: 20 minipage Completing the Technical Chapter on Variational AutoEncoders Image: 20 minipage Image: 20 minipage Completing the Technical Chapter on Dynamical Variational AutoEncoders Image: 20 minipage Image: 20 minipage Completing the Application & Evaluation Chapter Image: 20 minipage Image: 20 minipage Image: 20 minipage Completing the Conclusions & Future Work Chapter Image: 20 minipage Image: 20 minipage Image: 20 minipage Making Revisions Based on Feedback from My Supervisors Image: 20 minipage Image: 20 minipage Image: 20 minipage Submitting the Thesis Image: 20 minipage Image: 20 minipage Image: 20 minipage Image: 20 minipage Preparing Thesis Defence (Viva) Image: 20 minipage Image: 20 minipage Image: 20 minipage

Timetable for PhD Thesis Submission

Turnitin Originality Report

Confirmation Assessment Written Report

Submission date: 07-Jun-2022 12:12PM (UTC+0100) Submission ID: 182519476 File name: confirmation_assessment_report.pdf (371.86K) Word count: 12371 Character count: 69280

Con	firmation	Assessment Writ	ten Report		
ORIGINA	LITY REPORT				
SIMILA	3% ARITY INDEX	13% INTERNET SOURCES	3% PUBLICATIONS	3% STUDENT	PAPERS
PRIMAR	Y SOURCES				
1	arxiv.or	g ce			10%
2	astro.te	mple.edu			1%
3	"ECAI 2020", IOS Press, 2020 Publication				
4	deeplea	rn.org			<1%
5	Submitt Student Pape	ed to National L	Jniversity of Si	ngapore	<1%
6	Submitt College	ed to Queen Ma	ary and Westfi	eld	<1%
7	d4mucf	pksywv.cloudfro	nt.net		<1%
8	Sam Bo Chris G. Modellir GANs, N	nd-Taylor, Adam Willcocks. "Dee ng: A Comparati Iormalizing Flow	Leach, Yang p Generative ve Review of V s, Energy-Bas	Long, /AEs, ed and	<1%

Autoregressive Models", IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021 Publication

Exclude quotes Off Exclude matches < 25 words Exclude bibliography On

Addressing Concerns about the Similarity Score

\$

Internet Source

<

٢ 13 FT. Y ¥ *(i)*

Papamakarios, George,... 4% danoronnadon i orarcal rectora ou from pu(u): x = T(u) where $u \sim pu(u)$. (1) 2 We refer to pu(u) as the base distribution of the flow-based model. 1 The transformation T and the base distribution pu(u) can have parameters of their own (denote them as ϕ and w respectively); this induces a family of distributions over x parameterized by $\{\phi,\psi\}$. The defining property of flow-based models is that the transformation T must be invertible and both T and T-1 must be differentiable. Such transformations are known as diffeomorphisms and require that u be Ddimensional as well (Milnor and Weaver, 1997). Under these conditions, the density of x is well-defined and can be obtained by a change of variables (Rudin, 2006; Bogachev, 2007): px(x) = pu(u) |det JT (u)|-1 where u = T-1(x). (2) Equivalently, we can also write px(x) in terms of the Jacobian of T -1: px(x) = $p_{\rm H}$ (T-1(x)) ldet |T-1(x)| (3) The Jacobian

Match 1 of 38

Full Source Text Match 1 of 15

6%

https://arxiv.org/pdf/2... Internet Source

٢

13

F

Y

÷

(i)

<

courte er our proposed r on DENETHOR test dataset and make comparisons with state-of-the-art models. As shown in Tab. 5, PTST in proves 0.A. by around 3 points but with a lower 51 score (-1.98) compared to PSE+L-TAE. TV-P1CT attains highest performance in all metrics, especially with a significant increase around 7 points in F1 score compared to PSE+L-TAE. Tampered VAE for Improved Satellite Image Time Series Classification 14 Table 5: Comparison of our proposed and state-of-theart models on DENETHOR test dataset, 0.A.% Precision% Recall% F1 Score% PSE+TAE [12] 64.95 - - 54.50 PSE+L-TAE [11] 67.25 - -58.12 PTST 70.29 61.27 56.72 56.14 TV-PTST 73.78 70.37 65.96 65.50 (a) South Africa (b) Germany/DENETHOR Fig. 1: Classification performance of TV-PTST on South Africa and Germany test datasets with partially labelled

- Tampered VAE for Improved Satellite Image **Time Series** Classification (<u>https://arxi</u> v.org/abs/2203.16149)
- Normalizing Flows for **Probabilistic Modeling** and Inference (<u>https://arxiv.or</u> g/abs/1912.02762)