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1 Introduction
Remotely sensed data, including those obtained from space-borne sensors, constitutes an integral
part of Earth Observation (EO) data which is a valuable source for measuring spatiotemporal
dynamics of the surface of our planet. With the advancement of remote sensing technology,
the volume of remotely sensed data has been growing drastically, thereby necessitating the
automatic interpretation by employing big data analytics techniques.

Deep neural networks, as the most representative data-driven approach so far, have been
applied to various remote sensing-related applications, including but not limited to land cover
mapping [1], crop type classification [2], crop yield prediction [3], change detection [4], earth
surface forecasting [5], and multi-modal data fusion [6]. Additionally, deep neural networks
have been applied to different data modalities in remote sensing, such as hyper-/multi-spectral
images [1, 2, 5], synthetic aperture radar (SAR) [6], LiDAR [7], and optical images [4]. Despite
the promising results achieved, applying deep learning techniques to process remotely sensed
data still faces many challenges, which has been outlined in the survey paper [8], for example,
multi-modal information fusion among data obtained through different types of sensors, fusing
with a broad scope of geographical information, the temporal variable, and the integration
with established physical models. Apart from the challenges specific to remotely sensed data,
there are some common challenges needing to be addressed such as data efficiency and the
generalization capability of deep learning algorithms.

When it comes to my PhD research project, I plan to confine my attention to the following
challenges:

• developing novel neural network architectures that can better exploit spatiotemporal
structural information in satellite image time series (SITS);

• employing unsupervised learning methods to distil transferable feature representations
that can benefit downstream applications such as vegetation and urban growth monitoring;

• developing deep learning models with better generalization capability that can achieve
satisfactory results on unseen scenarios, i.e., deep domain adaptation approaches [9];

2 Overview of Key Research Areas
In the remote sensing community, the availability of large-scale, high-quality datasets for
benchmarking deep learning models is limited. These datasets are of crucial importance
for developing deep learning models specifically tailored for remotely sensed data. Due to
some obstacles in the remote sensing community, e.g., proprietary licenses required to access
satellite data, substantial domain expertise for annotation, the use of self-created datasets to
evaluate model performance has been commonly seen in many publications. In the paper [10],
the authors have summarized a proportion of annotated datasets of remote sensing imagery,
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highlighting the fact that most of existing datasets are unsuitable for training deep learning
models. Some researchers have made pioneering efforts towards the end of open-sourcing
high-quality benchmark datasets 1. These recently released large-scale datasets, especially the
DENETHOR (DynamicEarthNet) [11], EarthNet2021 [5], and MUDS [12], will significantly
facilitate my PhD research.

It can be seen from recently released datasets that dealing with spatiotemporal signals has
become a key area of interest in the remote sensing community with unresolved challenges for
current deep learning models. For example, TempCNN [13] and LSTM [14] combined with
spatial encoders such as mobilenetv3 [15] or resnet18 [16] performed even worse than a random
forest classifier with hand-crafted features [11], demonstrating the importance of devising
bespoke neural network architectures for effectively using SITS represented in consistent
spatiotemporal grids. Inroads have been made [2] by combining pixel-set encoders [17] with
the self-attention mechanism [18], which has shown superior performance to the random forest
classifier and other deep learning models. Therefore, how to effectively and efficiently explore
the spatiotemporal structural information in raw SITS has become a particular research area of
interest.

Unsupervised representation learning has also been an active research area in the machine or
deep learning community. Mainstream solutions include deep generative models, deep clustering
methods, and self-supervised learning. There has been rapid progress in deep generative models,
such as GANs [19], VAEs [20], deep autoregressive models [21], normalizing flow-based
models [22] and their hybrid variants [23], which have proven to be adept at capturing complex
distributions of modelled data. The core motivation of using generative models to perform
unsupervised representation learning is based on a simple principle "You cannot understand
what you cannot generate". As clustering algorithms such as k-means, gaussian mixture models
(GMM), and spectral clustering are primary unsupervised learning approaches in the machine
learning community, it is natural to extend these methods by integrating them into modern
deep learning frameworks. Additionally, self-supervised learning [24] as an emerging research
field has been actively studied in recent years, where discriminative approaches have been
adopted rather than generative methods based on the assumption that pixel-level generation
is computationally costly and may not be necessary for representation learning. One of the
most common strategies for self-supervised learning is to predict future, missing or contextual
information. Therefore, obtaining high-quality transferable features using unsupervised learning
methods is another research problem that I plan to address in my future research.

Unsupervised domain adaptation (UDA) [9] is an active research area in machine or deep
learning community. Supervised learning commonly assumes that training and testing datasets
are drawn from the same distribution, but this assumption rarely holds in real-world settings.
Domain Adaptation refers to developing algorithms that can generalize well to the target domain
by training models on a semantic related but distribution different source domain. There are
many approaches proposed to tackle this challenge, such as instance re-weighting adaptation,
feature adaptation, classifier adaptation, and adversarial adaptation [25]. Adversarial domain
adaptation models [26] have achieved great success by enforcing alignment either in raw data
space or high-level feature space using adversarial losses to regularize the feature learning
process. The domain adaptation problem has also been noticed in recently published papers
for crop type mapping [11, 27], where trained models need to be tested in data collected in a
different year, which is referred to as out-of-year evaluation. It has been reported that models
designed when completely disregarding the domain shift to a different year would suffer a
dramatic decrease in performance, which amounts to a 12 percentage points drop in accuracy

1Details of those recently released large-scale and high-quality datasets are listed in Appendix A.
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on DENETHOR [11]. Image-to-image (I2I) translation techniques [28, 29] have been used to
tackle the domain shift problem. For example, in papers [4, 30], researchers proposed to use
I2I translation techniques to suppress differences in unchanged regions caused by significant
seasonal variations when performing bi-temporal change detection. Therefore, devising deep
learning models that can handle the domain shift problem to a satisfactory degree using UDA
or I2I translation techniques is the third research problem that I plan to address in my future
research.

3 Conclusion & Research Plan
The overall aim of my PhD research is to develop deep learning algorithms that can exploit SITS
with a particular focus on vegetation and urban growth monitoring. To tackle these challenges I
will:

• investigate methods proposed for video understanding/video action recognition and other
research fields which involve spatiotemporal learning to study how the spatiotemporal
structural information can be exploited;

• investigate methods related to Graph Convolutional Neural Networks (GCNs) which aim
at generalizing operations from regular grids to irregular ones represented as graphs to
study how irregular data can be efficiently processed by deep learning models 2;

• investigate deep generative models, deep clustering models, and self-supervised learning
to study how to employ these methods to pre-train models on remotely sensed data without
labels to extract transferable feature representations;

• investigate UDA and I2I translation techniques to study how to exploit complementary
information in multi-modality remotely sensed data and how to improve generalization
capability of deep learning models to unseen scenarios.

Besides, before the confirmation assessment, I will submit at least one paper to international
conferences or journals.
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Appendices
A Large-scale & High-quality Datasets in Remote Sensing
Weikmann et al. [27] released a large-scale time-series dataset called TimeSen2Crop that is
comprised of about 1 million of labelled samples belonging to 16 crop types extracted from
Sentinel-2 multispectral images. Rußwurm et al. [31] proposed a novel large-scale satellite
image time-series dataset for crop type mapping termed BreizhCrops from the region of Brittany,
France, which contains more than 600k multivariate time-series extracted from Sentinel-2
satellite imagery. These datasets are characterized by focusing on exploiting high temporal
resolution of Sentinel-2 SITS with a revisit time of 5 days for vegetation monitoring. But
the spatial extent is neglected in these two datasets by taking mean values of each spectral
band in each parcel field, simplifying spatiotemporal signals to only temporal signals. The
recently released DENETHOR dataset [11] has filled this gap by providing a high-quality
dataset with harmonized, declouded and daily revisit times SITS. The high density in temporal
dimension combined with 3m spatial resolution poses great challenges for the existing deep
learning methods developed for crop type classification. More importantly, the DENETHOR
dataset is made publicly available under a larger project called DynamicEarthNet initiated by
Technical University of Munich (TUM) and German Aerospace Center (DLR), aiming at making
more multi-temporal EO data accessible. Another recently released dataset which also contains
high-density spatiotemporal signals combined with weather variables at the mesoscale (> 1km)
is EarthNet2021 [5]. The objective of EarthNet2021 is to enable climate impact projection at a
more fine-grained scale, e.g., < 100m, which will be beneficial for a wide array of downstream
tasks, such as crop yield prediction, forest health assessment, and biodiversity monitoring. The
above-mentioned datasets are focused on vegetation monitoring or weather forecasting because
these tasks can make the most of the rich features in the temporal dimension. Additionally,
a recently published dataset called Multi-Temporal Urban Development SpaceNet Dataset
(MUDS) [12] is focused on urban growth monitoring, which consists of SITS with 4m spatial
resolution and on a monthly basis, covering > 100 unique geographies and totalling > 11M
annotations. Compared to traditional bi-temporal change detection which is essentially using
two static images acquired at different times, MUDS reframes change detection as change and
object tracking tasks because the time span of SITS is from 18 ∼ 26 months. As pointed out
in the paper [12], visual object tracking (VOT) algorithms [32] developed in the computer
vision community are not suitable for being directly used for this dataset because of substantial
image-to-image variations and overly-dense annotated target objects in SITS.

B Summary of Progress To Date & Training Planned
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