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1. Project Description

1.1 Background
Apple fruit is usually stored for a minimum of six months in a controlled atmo-

sphere before marketing in the UK. It is not unusual for the stored fruit to suffer from
10-15% post-storage losses due to various causes, including physiological disorders
and fungal rotting. This leads to not only yield losses but also increased the cost of
sorting fruit post-storage. Fruit storability (i.e. post-storage fruit quality) can be af-
fected by many factors, including flowering time, fruit ripeness at picking, fruit surface
microflora, and climatic factors. Furthermore, the relationships of fruit quality with
these factors are usually non-linear, and the precise causal relationships have yet to
be elucidated.

1.2 Research Objectives
There are two specific research objectives: (1) predicting flowering time and (2)

predicting fruit ripeness for optimum picking. Predicting the degree of fruit ripeness
is critically important since it has been well established that fruit ripeness at picking
could significantly affect fruit storage potential.

Predicting flowering time: Historic data collected at XXXX over the last 80 years
will be used to study the temporal flowering pattern of several specific cultivars in
relation to winter and spring climatic data. Statistical modelling will be carried out
to study whether the temporal flowering pattern could be predicted from the winter
and spring climatic data alone.

Predicting fruit ripeness: One key research activity is to work with crop physiolo-
gist in order to define physiologically/biochemically what is “perfect fruit ripeness” for
harvesting. Previous research on predicting fruit ripeness is based on batches of fruit.
To understand the variability of fruit ripeness among individual fruit, we propose to
follow the development of individual fruit on several popular cultivars via imaging to
investigate whether ripeness can be predicted from the imaging information as well
as post-blossom temperatures.
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2. Related Work & Methodology
Generally, knowledge and skill in multivariate time series (MTS) analysis and dy-

namical systems will play a vital role in accomplishing those research objectives men-
tioned above. Besides, the feasibility of incorporating other types of data into pre-
diction frameworks such as hyperspectral images will be explored. More importantly,
the research will be focused on developing data-driven algorithms, especially on the
extension of deep-learning-based models to their probabilistic counterparts. Hope-
fully, the proposed algorithms will not only deliver satisfactory results concerning the
prediction of temporal flowering pattern and the degree of fruit ripeness but also can
be generalized to a broad spectrum of MTS data.

2.1 Multivariate Time Series (MTS) Analysis
2.1.1 Statistical Models

Large collections of time series are ubiquitous and generated in a wide variety
of areas, including natural and social sciences, internet of things applications, cloud
computing, supply chains and many more. The large-scale time-series data can be
leveraged to make better forecasts or to detect anomalies more effectively, which in
turn facilitates informed downstream decision making. Therefore, modelling MTS
data has long been a subject that has attracted researchers from a diverse range of
fields. There is a distinct demarcation in existing MTS analysis approaches, tradi-
tional statistical models and deep-learning-based models.

The most well-known model for linear univariate time series forecasting is the au-
toregressive integrated moving average (ARIMA)[1], which encompasses other autore-
gressive time series models, including autoregression (AR), moving average (MA), and
autoregressive moving average (ARMA). Additionally, linear support vector regression
(SVR) [2], treats the forecasting problem as a typical regression problem with time-
varying parameters. However, these models are mostly limited to linear univariate
time series and do not scale well to MTS. To forecast MTS data, vector autoregres-
sion (VAR), a generalization of AR-based models, was proposed. VAR is probably the
most well-known model in MTS forecasting. Nevertheless, neither AR-based nor VAR-
based models capture non-linearity. Besides, learning generative models of sequences
is a long-standing machine learning challenge and historically the domain of dynamic
Bayesian networks (DBNs) such as hidden Markov models (HMMs) [3] and Kalman fil-
ters [4]. State-space models (SSMs) are particularly well-suited for applications where
the structure of the time series is well-understood, as they allow for the incorpora-
tion of structural assumptions into the model. However, these SSMs suffer from two
major drawbacks: 1) the assumptions are restrictive and are violated in practical ap-
plications, and 2) extending linear dynamical systems to their nonlinear counterparts
makes learning more difficult and is computationally prohibitive for high-dimensional
signals.
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2.1.2 Deep Sequential Learning Models

With the advent of deep learning, it has shown promising results to exploit deep
neural networks to perform MTS analysis. Deep sequential learning models have been
extensively studied in various research areas, such as natural language processing
[5, 6, 7], speech analysis [8, 9], video prediction and generation [10, 11, 12], trajec-
tory forecasting [13, 14, 15] and MTS analysis [16, 17, 18]. As far as the research
field of time series analysis is concerned, many approaches have been proposed to
address challenges in a wide range of applications, such as traffic forecasting[19, 20],
product demand forecasting [21, 22], energy consumption forecasting [23], and disease
progression modelling[24, 25]. Existing deep sequential learning models can be sub-
sumed under two broad categories: 1) temporal and 2) spatio-temporal models. Con-
cretely, temporal models only consider temporal dependencies irrespective of forms
of input signals. This type of approaches mainly relies on the remarkable capability
of deep neural networks, such as recurrent neural networks (RNNs) [5], long short-
term memory networks (LSTMs) [26], gated recurrent units (GRUs) [27], temporal
convolution networks (TCNs) [28], and transformer architectures [7, 29, 9], captur-
ing nonlinear relationships in historical data for accurate forecasting. To the best of
my knowledge, the long- and short-term time-series network (LSTNet) [30] is the first
model designed specifically for MTS forecasting with up to hundreds of time series.
LSTNet uses TCNs to capture short-term patterns and LSTMs or GRUs for memoriz-
ing relatively long-term patterns. Besides, a noticeable characteristic of this type of
methods is that many research efforts have been devoted to designing complex neural
architectures to enhance expressive capacity. For example, there has been research
work [10, 31] attempting to improve the modelling capability for spatio-temporal se-
quences by incorporating additional memory cells responsible for leveraging spatial
dependencies along the depth of stacked RNNs.

Despite the impressive performance achieved by these pure temporal models, it
is reasonable to exploit interdependencies between different variables to develop ad-
vanced deep sequential learning models for the purpose of increasing predictive ac-
curacy and efficiency simultaneously. Consequently, approaches taking interdepen-
dencies between different variables or dimensions of signals into account have been
actively studied, referred to as spatio-temporal models [32, 33, 19, 20]. In many real-
world applications, such as traffic forecasting and cyber-physical systems, different
dimensions of MTS naturally correspond to recordings of sensors deployed in vari-
ous locations. Nevertheless, spatio-temporal models hereafter will be used to refer
to models which employ not merely temporal dynamics but structured information in
time-series data. Spatio-temporal models can be further separated by their internal
mechanisms of modelling interdependencies between different variables implicitly or
explicitly.

Graph convolutional networks (GCNs) are currently dominating solutions for im-
plicitly modelling interdependencies between different variables, especially in those
applications where different variables correspond to different physical entities in dy-
namical systems. For example, different from general correlated time series predic-
tion, research on traffic forecasting pays more attention to spatial correlations among
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the traffic series collected from different sources (e.g., sensors deployed in different
spatial locations in a road network) except for the temporal correlations. GCNs are a
special kind of CNNs generalized for graph-structured data, which have been widely
used in node classification, link prediction, and graph classification [34]. There are two
mainstreams of GCNs, the spectral- and spatial-based approaches. Spectral-based
models [35, 36, 37] smooth a node’s input signals using spectral graph convolution fil-
ters. Spatial-based models [38, 39, 40, 41] extract a node’s high-level representation
by aggregating feature representations from its neighbouring nodes. Most of these
works focus on graph representation learning, which obtains node embeddings by
integrating the features from its local neighbours based on the given graph struc-
ture and proposed message-passing mechanisms. For example, GAT [41] learns to
weight the features from different neighbouring nodes with attention scores calcu-
lated by the multi-head self-attention mechanism. DIFFPOOL [42] enhances GCNs
with node clustering/graph coarsening to generate hierarchical graph representations.
MTS forecasting can be viewed naturally from a graph perspective. Different dimen-
sions of MTS data can be considered to be nodes in graphs, and they are interlinked
through their hidden associations. Therefore modelling MTS data using GCNs has
been shown a promising way to preserve temporal trajectories while exploiting the
interdependencies among MTS data.

Generally, GCN-based MTS models fall into two broad categories: 1) designing
more complicated neural architectures, especially message-passing mechanisms, and
2) constructing dynamical graph structures rather than using pre-defined static graphs.
The first type of research work either focuses on the fusion mechanisms for effec-
tively integrating spatial and temporal dependency learning modules or improving
the message-passing functions. For example, GA-RNNs [32] proposed to replace multi-
layer perceptrons (MLPs) in classical RNNs with graph convolutions which take into
consideration graph topology, enabling node hidden state updating to be dependent
on historical hidden states of its local neighbouring nodes. DCRNN [33] proposed
to use diffusion convolutions to model spatial dependency and further integrate it
into sequence-to-sequence models. However, GCN-based MTS models relying on pre-
defined static graph structures require substantial domain-specific expertise, and the
expressive capacity is sensitive to the quality of prescribed graphs. As a result, there
have been research efforts [19, 20] attempting to generate data-dependent adaptive
graph structures dynamically. These methods mainly rely on learned node embed-
dings to infer underlying associations using attention mechanisms with the limitation
that the diversity of graph structures that can be modelled may be restricted.

As mentioned previously, GCNs model underlying interactions implicitly by the
message-passing function or with the help of an attention mechanism. Consequently,
it is difficult to capture different types of interactions between pairs of nodes. Re-
cently, a novel, principled framework called neural relational inference (NRI) [43] has
been proposed in order to infer an explicit interaction structure of modelled dynamical
systems in an unsupervised fashion. Generally, the NRI model learns the dynamics
with a GCN and a latent graph structure where discrete edge types are predicted
from observed trajectories using variational inference. It has been demonstrated that
NRI models can predict the dynamics many time steps into the future in real motion
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capture and sports tracking data with a very small number of edge types.

2.2 Hyperspectral Image Analysis
Apart from numerical data collected either at NIAB EMR or other institutions,

such as meteorological stations in the UK, hyperspectral imaging techniques may
provide supplementary information for realizing those research objectives outlined in
section 1. Indeed, the rising availability of high-quality satellite data (hyperspectral
image series) by both state [44] and private [45] sectors opens up numerous high-
impact applications for machine learning methods. Among these, satellite image time
series (SITS) have been demonstrated to be well-suited for analysing crop phenology
[46], crop type classification [47, 48, 49, 50] and crop yield prediction [51, 52, 53, 54].
Despite the achieved success of using traditional machine learning methods, such as
random forest (RF) and support vector machine (SVM), it can be seen that the gradual
adoption of deep learning methods such as CNNs and RNNs for learning spatial and
temporal attributes has brought significant improvements in predictive performance.
For example, researchers [52] have proposed to use MODIS reflectance and tempera-
ture images to predict crop yield and have shown the transferable potential to crops in
different regions. Based on the assumption proposed in [51] that pixels of satellite im-
ages may be considered permutation-invariant and spectral bands may be considered
uncorrelated, processing SITS data can be reduced to sequential modelling problems
where input signals at individual time steps are 2D matrices. Besides, it has been
shown promising to integrate heterogeneous data, including surface reflectance, sur-
face temperatures, climatic variables, soil property, and genotypes of crops, into deep
sequential learning frameworks to improve crop yield prediction accuracy or agricul-
tural breeding [53, 54]. Recently, a large-scale dataset called EarthNet2021 [55] has
been released, containing spatio-temporal Sentinel-2 satellite imagery at 20m reso-
lution, for benchmarking Earth surface reflectance forecasting models. It has been
argued that such models would benefit downstream applications, such as crop yield
prediction and biodiversity monitoring. The research mentioned above has suggested
that incorporating heterogeneous data such as hyperspectral images may be promis-
ing for building powerful models that can better achieve the research objectives of this
project.

2.3 Challenges & Promising Solutions
This section will be devoted to briefly illustrating challenges characteristic to MTS

analysis and corresponding promising solutions, which helps make innovative devel-
opments in future research.

2.3.1 Probabilistic Time Series Forecasting

Deep sequential learning models mentioned in section 2 are all deterministic mod-
els. The only source of randomness or variability in these models comes from the
conditional output probability model, which is assumed to be insufficient to model the
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kind of variability observed in highly-structured data. There is recent evidence that
when complex sequences such as speech and music are modelled, the performance
of RNNs can be significantly improved when uncertainty is included in their hidden
states [56, 57, 58]. Time series for dynamic systems have been studied extensively in
systems theory. In particular, state-space models (SSMs) [59] have proven to be a pow-
erful tool to analyze and control the dynamics. SSMs can be regarded as a probabilistic
extension of RNNs, where the hidden states are assumed to be random variables. Al-
though SSMs have found their widespread applications, their stochasticity has limited
their use in the deep learning community as posterior inference for nonlinear models
is computationally intractable. Benefiting from recent advances in variational infer-
ence, especially stochastic gradient variational Bayes (SGVB) [60, 61], which makes
approximate inference of latent variables computationally tractable, there have been
research efforts [62, 63, 64, 24] attempting to bridge the gap between SSMs and deep
neural networks, giving rise to sequential latent variable models or deep state-space
models. For example, researchers proposed to use deep neural networks to enhance
classical Kalman filters with arbitrarily complex transition dynamics and emission
distributions, resulting in deep Kalman filters [62]. Deep state-space models proposed
in [63], a framework for time series forecasting, marries SSMs with RNNs by using
RNNs to predict parameters of linear state-space models from which observations are
generated. Deep Variational Bayes filters [64], a new method for unsupervised learn-
ing and identification of latent Markovian state-space models, make the recognition
model predict transition parameters rather than latent states to allow reconstruction
errors to be backpropagated into transition models. The recently proposed attentive
state-space model [24] for disease progression modelling applies attention to the latent
state space, eliminating the restriction caused by the Markovian assumption so that
richer distributions can be modelled. All these methods follow similar design princi-
ples, i.e., retaining structural assumptions in SSMs while making the stochastic state
transitions of SSMs nonlinear. Integrating SSMs with deep neural networks enjoys
benefits of both worlds, such as efficient data utilization and the capability to directly
process raw time series with considerably less human effort.

2.3.2 Multimodal Nature

One of the greatest challenges in pedestrian trajectory forecasting is the multi-
modal distribution of human behaviour. Instead of predicting a single mode of human
behaviour with high variance, it has been shown beneficial to allow models to gen-
erate multiple plausible or socially acceptable trajectories. For example, Social-GAN
[13] is the pioneering work where generative adversarial network (GAN) [65] is used
to distinguish real trajectories from synthesized ones instead of the commonly used L2
loss that tends to make models learn the ”average behaviour”. In Social-BiGAT [14],
researchers proposed a graph-based GAN to generate realistic, multimodal trajectory
predictions and employed a reversible mapping similar to that used in BicycleGAN
[66] to improve the diversity of generated samples. It has been observed that simply
incorporating random noises as additional inputs to conditional GAN does not guar-
antee increased variations of the generated outputs as mode collapse may still easily
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occur. Therefore, increasing the diversity of generated samples of GAN is nontrivial.
Consequently, it is still an open problem and has been actively studied, especially in
the research field of image-to-image translation [66, 67, 68, 69]. The promising solu-
tions include enforcing bijective consistency [66, 67] between the latent code space and
output space and/or disentangled representation learning [68, 69] in deep generative
models. It is reasonable to expect that methods developed for tackling this particular
challenge would also inspire model design for MTS and the possibility of providing a
better alternative for traditional evaluation metrics adopted in MTS, such as mean
absolute percentage error (MAPE) and mean absolute scaled error (MASE).

2.3.3 Time Series Representations

It has been acknowledged that the great success achieved by deep learning mod-
els can be attributed to the representation learning capability. Therefore, there have
been research efforts attempting to explore more effective time series representations
for deep learning models. For example, in [70] memory cells in traditional LSTMs
have been superseded by state frequency memory which resembles Discrete Fourier
Transform (DFT), allowing models to capture multi-frequency patterns. The recently
proposed EvoNet [71] transforms raw time series into lower-dimensional temporal dy-
namics by constructing evolutionary state graph sequences where nodes in graphs
represent representative temporal patterns so that anomalous events can be detected
when certain kinds of state transitions occur. Similarly, Time2Graph [23], a novel
representation learning algorithm for time series modelling, transforms time series
to shapelet [72] evolution graphs. N-BEATS [18], a novel architecture for univari-
ate time series forecasting, uses MLPs to predict basis function expansions and their
coefficients, and then combine them to obtain predicted values in the specified fore-
cast horizon, showing impressive performance on heterogeneous time-series datasets.
These methods share the similarity of decomposing raw time series into basic building
units and model dynamics existing in these units, introducing hierarchical represen-
tation learning into time series modelling.

3. Expected Outcomes & Relevance to Research in
CSEE

3.1 Expected Outcomes
• Building a standard preprocessing pipeline for data collected at XXXX and pos-

sibly from other sources to create curated and analysis-ready datasets;

• Conducting extensive experiments and comprehensive comparisons using sta-
tistical and deep-learning-based models to realize two main objectives of this
research project, i.e., predicting flowering time and the degree of fruit ripeness;

• Based on established baseline models, making further improvements following
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the potential research directions outlined in 2.3 and summarizing research out-
puts for making publications on international conferences and journals;

• Possibly further testing the generalization ability of proposed algorithms, espe-
cially for other similar applications in agriculture and horticulture and making
a toolkit publicly available in the hope of facilitating quick experimentation and
prototype development for researchers in the community.

3.2 Relevance to Research in CSEE
This research project is characterized by being interdisciplinary, requiring exper-

tise in biology, plant science, data science, artificial intelligence, etc., and having sig-
nificant practical values. Therefore, I believe it strongly aligns with the research in-
terests and vision of the CSEE department.
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